

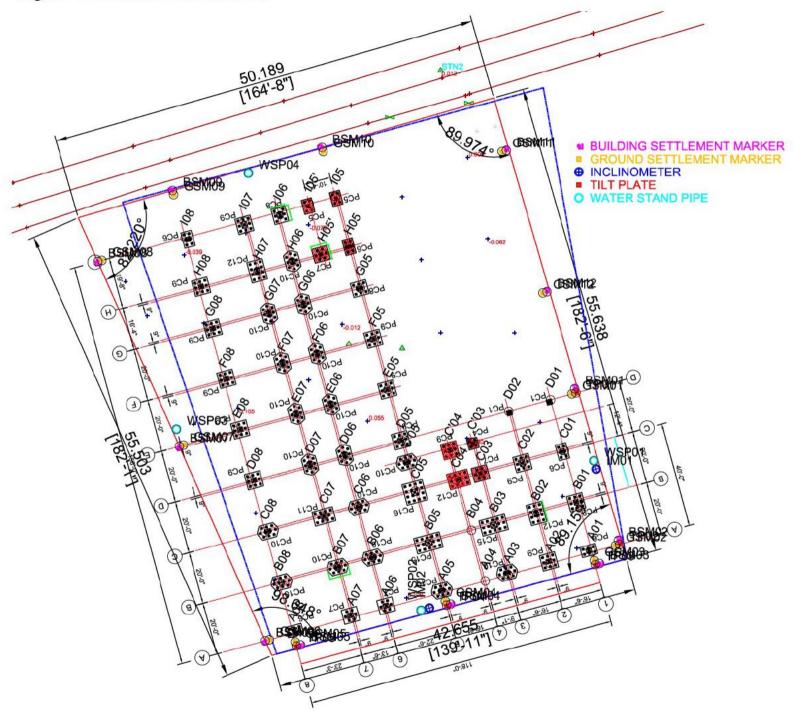
Practicing Engineering Series

Geotechnical Instrumentation and Testing in Myanmar

18 May 2024, FMES-MSCE Knowledge Sharing Seminar

Win Naing Htun, B.E.(Civil), M.Eng.AIT, PE-0036(Structural), PE-0124(Geotechnical)
Visiting Associate Professor, Civil Engineering Department, YTU
Managing Director, Civil Solution Consultants Ltd. (CSC), Yangon, Myanmar
E-mail: csc1999@gmail.com, Web: https://www.csc1999.com

What is Instrument?



- It is a kind of measuring device
- It is a combination of physical/mechanical and electrical/electronic parts.
- It connects to Data Logger or Monitoring Device and Computer. It can be small, medium, large scale.
- It can be one time application or reusable.
- Some of them are:
- (1) Tiltmeter (2) Piezometer (3) Inclinometer (4) Strain Gauge (5) Pressure Transducer (6) Load Cell (7) Linear Variation Displacement Transducer, LVDT, etc.

TESTING

- Scope of Work: instrument + monitoring unit for tilting, leveling, inclination, settlement, loading, etc. for various engineering requirements such as building tilting, settlement, lateral movement, Pile Integrity, Pile Capacity (static and dynamic), etc.
- Duty: Public Safety
- Responsibility: Implementation in difficult situation, application in Permit to Work System.
- Skills: Task Risk Assessment, Field Oriented, Practicing in HSE Policy, Working at Height.
- Ultimate Goal: Safe and Durable working environment.

Figure 1: Instrumentation Plan

MEMS Digital Tiltmeter

Applications The Model 6101D MEMS Digital Tiltmeter is designed to measure tilt

in structures including...

- Buildings
- Dams
- Embankments
- Slopes
- Excavation walls
- Open pits

4 0.817 From · 1.038

Model FPC-2 Field PC showing a Live Tiltmeter Data reading screen shot.

Tilt Plate

Model 6201-1C Ceramic, 6201-1A Anodized Aluminum and 6201-1S Stainless Steel Tritplates (tiltplates are permanently attached to structure being monitored).

Tilt Plate Installation Photo

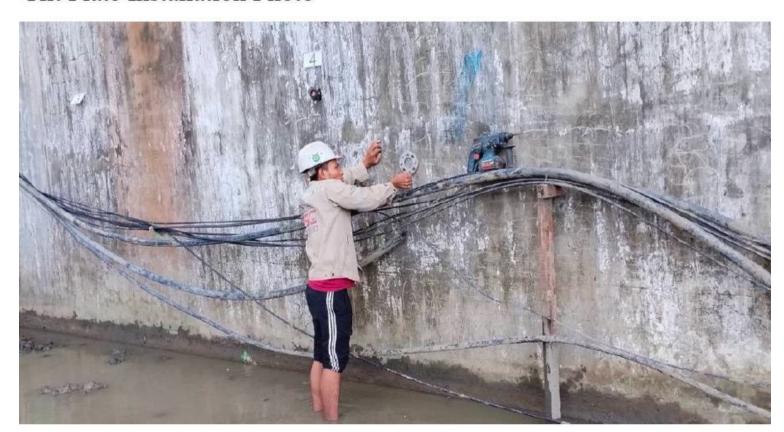
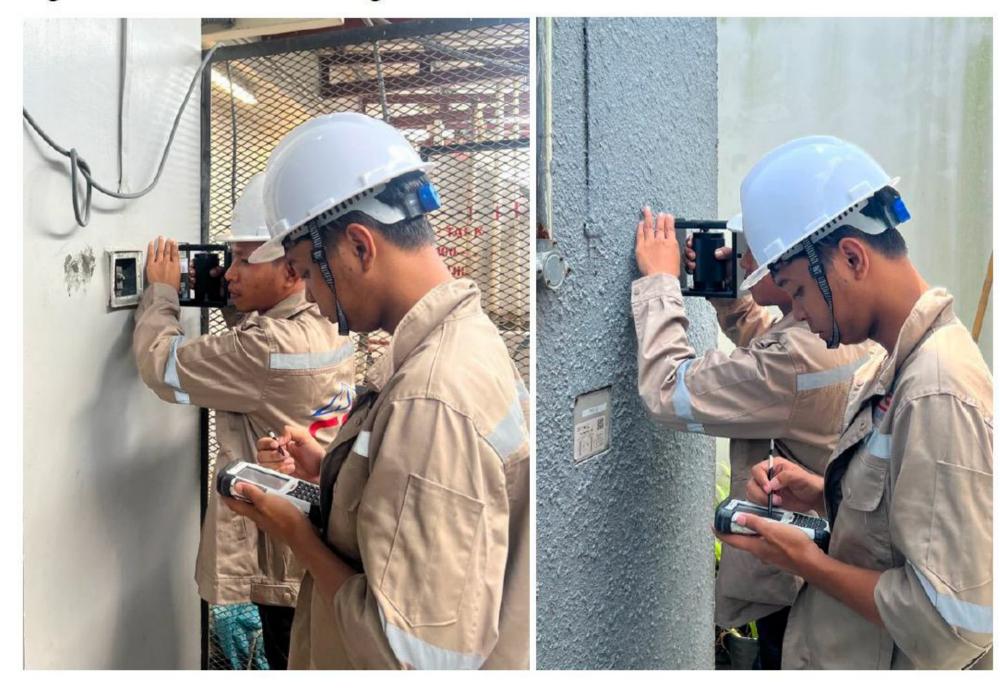



Figure 5: Tiltmeter Monitoring Photos

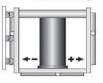
Tilt Plate Monitoring Record (Tilt Plate - 02) (Zealax Hotel)

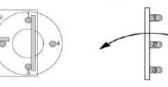
Location : Ahlone Installed On: 15/08/23 Initial Reading On: 18/08/23 Last Reading On: 25/10/23 Project: 1B + 6S RCC Builling

Consultant : SDG Group

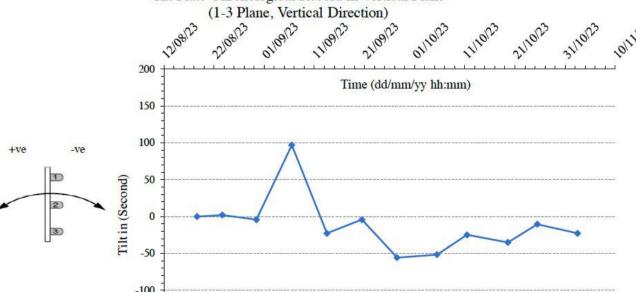
Client : SunShine Survey

Limit: 0.78°


Reading	Reading			Cummulative Tilt in	Cummulative Tilt in	Cummulative Tilt in		
Date & Time -	ale & Time Difference Till Degree	Degree °	Degree ° Minute ' Secon	Second "	Remark			
18/08/2023 15:05:18	-122	65	-187	-0.1071	0.0000	0.0000	0.00	Initial Reading
23/08/2023 15:12:02	-110	76	-186	-0.1066	0.0006	0.0344	2.06	Sheet Piling Initiated
30/08/2023 10:58:13	-111	78	-189	-0.1083	-0.0011	-0.0688	-4.13	
06/09/2023 12:12:44	-98	42	-140	-0.0802	0.0269	1.6157	96.94	
13/09/2023 12:09:44	-129	69	-198	-0.1134	-0.0063	-0.3782	-22.69	Sheet Piling Finished
20/09/2023 12:09:44	-119	70	-189	-0.1083	-0.0011	-0.0688	-4.13	
27/09/2023 12:09:44	-141	73	-214	-0.1226	-0.0155	-0.9282	-55.69	
05/10/2023 11:11:37	-126	86	-212	-0.1215	-0.0143	-0.8594	-51.57	Before Excavation
11/10/2023 11:11:37	-116	83	-199	-0.1140	-0.0069	-0.4125	-24.75	Excavation Initiated
19/10/2023 14:30:50	-124	80	-204	-0.1169	-0.0097	-0.5844	-35.07	During Back Filling
25/10/2023 11:23:13	-123	69	-192	-0.1100	-0.0029	-0.1719	-10.31	Backing Filling Completed
02/11/2023 11:39:34	-124	74	-198	-0.1134	-0.0063	-0.3782	-22.69	Piling Initiated



A- Reading



+ve

-ve

Tilt Plate Chronological Record in Vertical Plane

CIVIL SOLUTION CONSULTANTS LTD.

Operation Off: No.413-414, Aung Thitsar St., 48 Ward, North Dagon

Township, Yangon, Myanmar, 11421. Tel.: +95-9-5003281, +95-9-5077153, +95-9-798476843

Tel.: +95-9-5003281, +95-9-5077153, +95-9-79847684 E-mail: info@csc1999.com; Web: www.csc1999.com

MEMS PORTABLE TILT METER TEST REPORT

Type: MEMS TILT METER

Calibration No : CSC- 54-23-Tilt-Meter-1820

Model Number : Geokon 6101-D

Calibration Date : 21-Aug-23

Serial Number: 1820838

Technician : Aung Htet

Max: Capacity: 0~15°

Checked By : Daw Yi Yi Khin

Ambient Temp : 27.5 Deg C

Recommended Next Calibration: 20-08-2024

This calibration has been carried out by using <u>Digitial Total Station</u> calibrated by Geo Applied International, Model CTS-632R6, SN: 242974, Dated: 12-07-2023.

Applied Tilt (°Degree)	*** Readir	ng from Tilt-Me (Digits) ***	Change	Linearity (% Max: Load	
	Cycle 1	Cycle 2	Avg:	2000	
0.00000	70	70	70	0	
0.01667	82	81	82	12	0.39
0.03333	94	93	94	12	1.23
0.05000	105	106	106	12	2.07
0.06667	115	116	116	10	1.10
0.08333	125	126	126	10	0.13
0.10000	136	134	135	10	1.28
0.11667	148	145	147	12	0.90
0.13333	160	157	159	12	0.06
0.15000	171	172	172	13	1.69
0.16667	182	182	182	11	1.17

Gauge Factor: 0.0015 Degree/Digit

Calculated Tilt ($^{\circ}$ Degree) = G * (R₁ - R₀)

* Note: The above calibration uses a linear regression method. The Zero Reading shown is ideal for straight line computation and does not usually agree with the actual no-load reading.

** Linearity = ((Calculated Tilt - Applied Tilt) / Max. Applied Tilt) x 100%

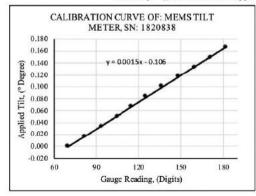


Figure 6: Casagrande Piezometer & Water Level Monitoring

More Info | Instructions | Get Quote

Coaxial Cable Water Level Meter

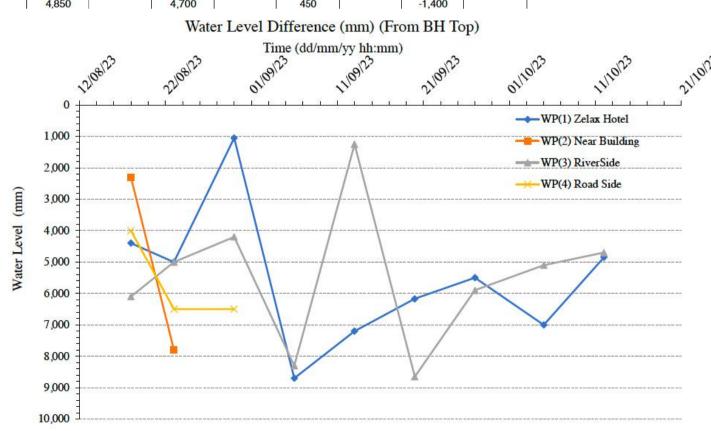
Model 102 Data Sheet

Water Stand Pipe (Water Level Monitoring Record)

Location : Ahlone

Project: 1B + 6S RCC Builling

Installed On: 15,16,17,18-08-2023 Initial Reading On: 18/08/23


Consultant : SDG Group Client: SunShine Survey

Last Reading On: 12/10/23

	Vater Level Difference frm Initial Reading (mm)				Water Level Difference frm Initial Reading (mm)			Water Level Reading (mm) (From BH Top)				
Remark	WP(4)	WP(3)	WP(2)	WP(1)	WP(4) Road Side	WP(3) RiverSide	WP(2) Near Building	Date & Time WP(1) Zelax Hotel				
Initial Reading	0	0	0	0	4,000	6,100	2,300	4,400	18/08/23			
	2,500	-1,100	5,500	600	6,500	5,000	7,800	5,000	23/08/23			
	2,500	-1,900		-3,350	6,500	4,200	35472.54.54	1,050	30/08/23			
WP(2) flooded due to close Sheet Piling	10.5	2,200		4,300	675	8,300		8,700	06/09/23			
WP(4) flooded due to possible pipe leak		-4,850		2,800		1,250		7,200	13/09/23			
		2,550		1,770		8,650		6,170	20/09/23			
		-200		1,100		5,900		5,500	27/09/23			
		-1,000		2,600		5,100		7,000	05/10/23			
		-1,400		450		4,700		4,850	12/10/23			

Water Level Difference (mm) (From BH Top)

Inclinometer Casing Installation & Drilling Rig

Digital Inclinometer System

Applications

The Model GK-604D Digital Inclinometer System is used to determine and measure the lateral movements in and around...

- Landslides
- Unstable Slopes
- Dam Embankments
- Landfills
- Slurry walls
- Caissons
- Piles
- Sheet Piling
- Tunnels

Model GK-604D Digital Inclinameter System.

Model 61000 Digital Inclinameter Probe.

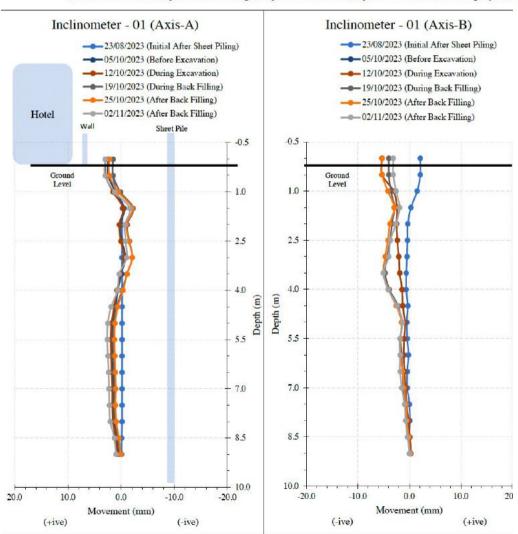
Figure 4: Inclinometer Monitoring Photos

Inclinometer Monitoring Record (Inclinometer - 01)

Location : Ahlone Project: 1B + 6S RCC Building

Installed On: 15/08/23 Consultant: SDG Group
Initial Reading On: 19/08/23 Client: SunShine Survey
Last Reading On: 25/10/23 Hole Depth: 12m (Only 9m Readable)

A-axis Max Movement : $0 \sim 5$ mm B-axis Max Movement : $0 \sim 5$ mm

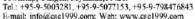

N: 1857989.510 E: 193577.814

7: 5.179

Remark: (Sheet Piling Works completed)

(Excavation Works completed & Backfilling On Going)

(Data From Initial(After Sheet Piling), Before Excavation, After Excavation are displayed)



CIVIL SOLUTION CONSULTANTS LTD.

Operation Off: No.413-414, Aung Thitsar St., 48 Ward, North Dagon Township, Yangon, Myanmar, 11421.

MEMS INCLINOMETER TEST REPORT

Type: MEMS INCLINOMETER

Model Number : Geokon 6100-D

Serial Number : 1306731

Max: Capacity : 0 ~ 30°
Ambient Temp : 27.9 Deg C

Calibration Date : 21-Aug-23
Technician : Aung Htet

Checked By : Daw Yi Yi Khin Recommended Next Calibration: 20-08-2024

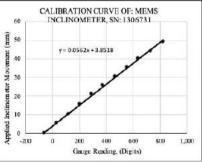
Calibration No : CSC- 55-23-Inclinometer-13

This calibration has been carried out by using Calibrated LVDT, Model: SDP_C100, SN: BAB141559, traceable to

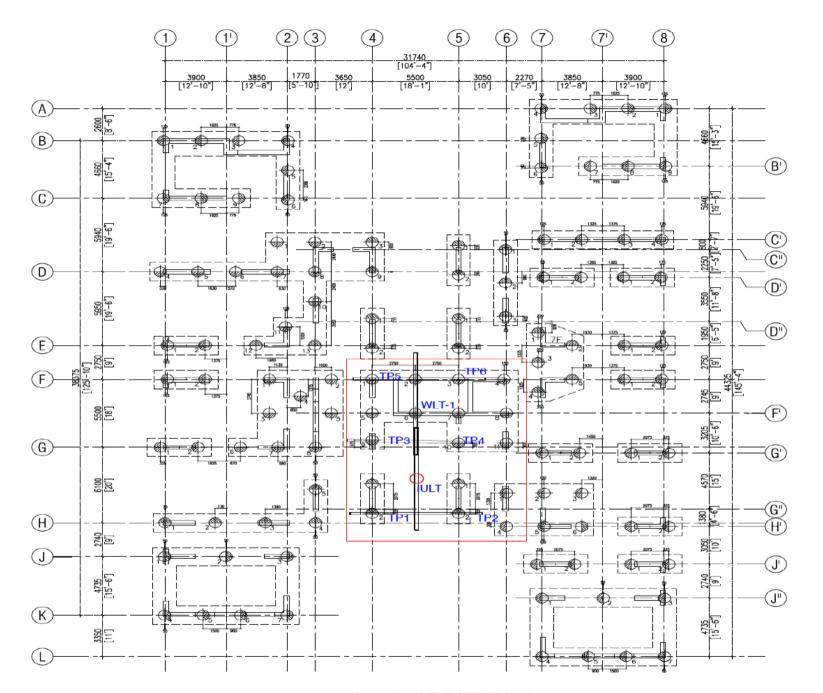
traceable to Cert No: CSC-51-23-LVDT-BAB141539, Dated: 02-07-2023.

Applied Inclinometer Casing	*** Reading	g from Inclinom (Digits) ***	eter A-Axis	Change	Linearity (% Max: Load)
Movement (mm)	Cycle 1	Cycle 2	Avg:	956	1,000
0.00	-58	-60	-59	0	
5.30	33	35	34	93	0.19
10.00	118	120	119	85	0.03
15.46	204	206	205	86	1.32
20.86	289	290	290	85	2.62
25.80	373	377	375	86	2.90
30.50	463	468	465	90	2.15
35.50	551	560	556	90	2.01
40.16	635	640	637	82	2.15
44,08	725	735	730	93	0.45
49.08	815	830	823	93	0.87

Gauge Factor:

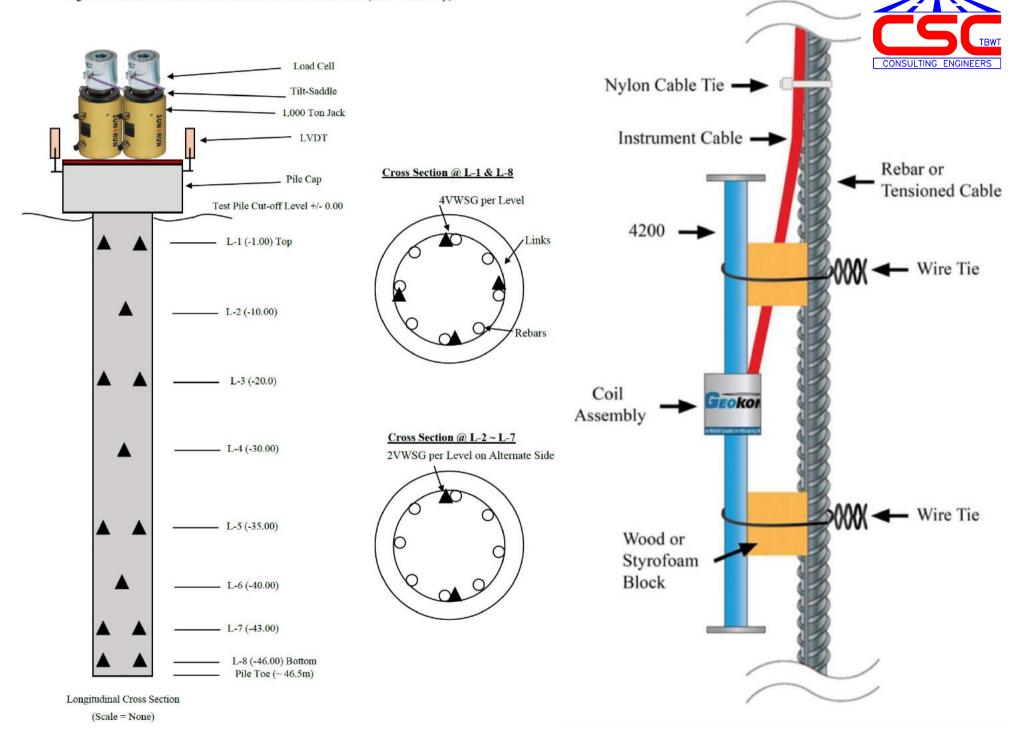

0.0562

mm/Digit


Calculated Displacement (mm) = G * (R1 - R0)

* Note: The above calibration uses a linear regression method. The Zero Reading shown is ideal for straight line computation and does not usually agree with the actual no reading.

** Linearity = ((Calculated Displacement - Applied Displacement) / Max. Applied Displacement) x 100%



REFERENCE BORE HOLE (ZONE C1)	SIZE OF BORED PILE	WORKING LOAD PER PILE	ESTIMATED PLE PENETRATION FROM PILE CUT-OFF LEVEL (-1.55m PROM GROUND FLOOK LEVEL)	NO. OF PLE
BH 17,18,19,20	- 800≠	380t	46.5 M	121
			TOTAL NO. OF PILE	121

CONSULTING ENGINEERS

NOTE; LIFT PILECAP CUT-OFF LEVEL (-2.9m FROM GROUND FLOOR LEVEL) TO BE VERIFIED WITH MAKE

Figure 2: Instrumentation Detail for 800mm Dia: Bored Pile (ULT-Test Only)

Concrete Embedment Strain Gages

Vibrating Wire Readout

Applications

The Model 4200, 4202 and 4210 are designed to measure strains in or on...

- Foundations
- Piles
- Bridges
- Dams
- Containment vessels
- Tunnel liners
- Mass concrete with coarse aggregates
- Laboratories and/or where space limitations exist (Model 4202)

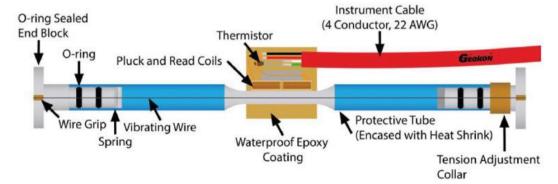


Figure 1: Model 4200 and 4200L Vibrating Wire Strain Gage

Figure 5: Attaching Model 4200 Strain Gages to ULT Pile Rebar Cage

2 VWSGs Layer (Middle Layers)

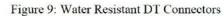



Figure 6: Attaching Cables Rebar Cage

7: Rebar Cage Lowering to BH & Lapping Area

✓ Waterproof✓ Dustproof✓ Anti-Cxidation✓ Aging Resistance

Figure 8: Last Cage & Sensors Checking after Concreting

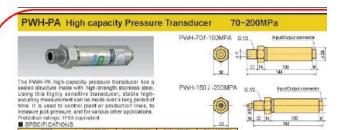


Figure F1: ULT Test Inverted Beam System Setup

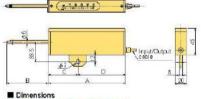
High capacity Available for many fields of industrial application such as plant, production line, jack pressure, etc.

Load Cells

DISPLACEMENT TRANSDUCERS

SDP-C Displacement Transducer

50/100mm


The SDP-C displacement transducer is a general-purpose, strain gauge type transducer. Designed with a strain-generating cantilevor, it is able to make a table measurement while maintaining the high sereitivity to mrusoule displacements.

Protection ratings: IP40 equivalent

SPECIFICATIONS

TYPE	SDF-5DC	9DP-100C			
Capacity	50mm	108mm			
Rated Curput	2.5mV/V(5000X1	0-6 strain) ±0.2%			
Sensitivity (croir sensitivitim	100	50			
Non-linearite	1.2%RO				
Spring tores	5.9N				
Frequency response	1Hz				
Allowable temperature range	D ~ +60°€ (no	condensation)			
rput/Output resistance	3500				
Resonanced exciting voltage	2V or less				
Allowable excring voltage	5V				
Verght	25Co	350g			

General purpose

TYPE A B C D DP-60C 130 70 50 80

oplied cable : B-4V10NJ-STB (ø5mm 0.3mm² 4-core shielded vinyl cable m)

CR1000 Measurement and Control Datalogger

The CR1000 provides precision measurement capabilities in a rugged, battery-operated package. It consists of a measurement and control module and a wiring panel. Standard operating range is -25° to +50°C; an optional extended range of -55° to +85°C is available.

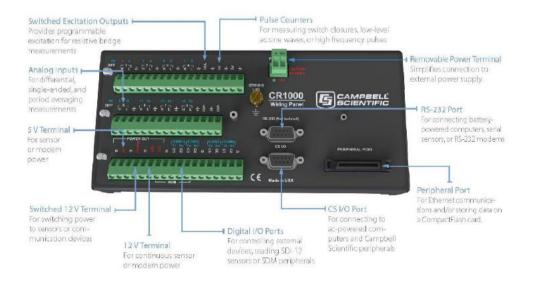


Figure 3: Test Pile Preparations CONSULTING ENGINEERS Figure F4: Level Checking 16.865777N 96.091089E Yangon Feb 11, 2024 8:34:39 AM

CIVIL SOLUTION CONSULTANTS LTD.

Operation Off: No.413-414, Aung Thitsar St., 48 Ward, North Dagon Township, Yangon, Myanmar, 11421.

Taligon, Nayannar, 11421.

Tel.: +95-9-5003281, +95-9-5077153, +95-9-798476843

ISO 9001:2015 Certified E-mail: csc1999@gmail.com; info@csc1999.com; Web: www.csc1999.com

LINEAR VARIATION DISPLACEMENT TRANSDUCER CALIBRATION

Type : LVDT	Calibration No: CSC-46-23-LVDT-BAB141
Model Number : SDP-C100	Calibration Date: 03-July-2023
Serial Number : BAB141544	Ambient Temp: 35.49 Deg C
Max: Range : 0 ~ 100 mm	Technician: Thant Zin Zaw
Cable Length : 0.5 m	Checked By : Daw Yi Yi Khin

This calibration has been carried out by using Glass Plates calibrated by Department of Research & Innovation (Misteral) Cert No. <u>DRI/NSOD/23/J-0113-0125</u> Dated: 23-03-2023,

Applied Glass Plates		om CR-800/1000 D ng from TC32K (με		Change	Linearity (% Max: Displacement	
(mm)	Cycle 1(up)	Cycle 2(down)	Avg:			
0.00	0	0	0.00	0		
10.00	-507	-505	-506.00	-506	0.02	
20.00	-1011	-1006	-1008.50	-503	-0.03	
30.00	-1514	-1506	-1510.00	-502	-0.10	
40.00	-2019	-2009	-2014.00	-504	-0.12	
50.00	-2527	-2516	-2521.50	-508	-0.07	
60.00	-3028	-3021	-3024.50	-503	-0.11	
70.00	-3537	-3528	-3532.50	-508	-0.06	
80.00	-4040	-4035	-4037.50	-505	-0.06	
90.00	-4545	-4538	-4541.50	-504	-0.08	
100.00	-5044	-5044	-5044.00	-503	-0.13	

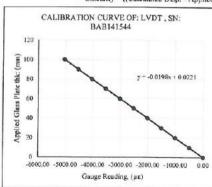
Gauge Factor:

-0.0198 mm/µs

Regression Zero Reading:

0.02

C80-46-23-BAB141544 BAB141544


0 - 100 mm 03-July-2023 02-July-2024 -0.0198 mm/us

Calculated Displacement (mm) = $G * (R_1 - R_0)$

* Note:

The above calibration uses a linear regression method. The Zero Reading shown is ideal for straight line computation and does not usually agree with the actual no-load reading.

** Linearity = ((Calculated Disp: - Applied Disp:) / Max. Applied Disp:) x 100%

vil Solution Consultants Ltd.,

CIVIL Operation

CIVIL SOLUTION CONSULTANTS LTD.

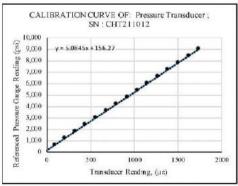
Operation Off: No.413-414, Aung Thitsar St., 48 Ward, North Dagon Township,
Yangon, Myanmar, 11421.

Tel.: +95-9-5003281, +95-9-5077153, +95-9-798476843

ISO 9001:2015 Certified E-mail: csc1999@gmail.com: info@csc1999.com: Web: www.csc1999.com

PRESSURE TRANSDUCER CALIBRATION REPORT

This calibration has been carried out by using referenced Pressure Gauge Calibrated By Department of Research & Innovation, Serial No: 1104972768, traceable to Cert No: P-030-23 Dated: 23-03-2023.


Referenced Gauge Reading (Bar)		om Pressure Trans Readout (με) ***		Change	Linearity Contract up	
	Cycle 1	Cycle 2	Avg:	93010113 = 100		
0	-32	-32	-32			
600	88	87	88	119.5	0.08	
1200	205	205	205	117.5	0.06	
1800	320	322	321	116.0	-0,06	
2400	439	440	440	118.5	-0.03	
3000	559	561	560	120.5	0.11	
3600	679	681	680	120.0	0.22	
4200	794	797	796	115.5	0.08	
4800	918	921	920	124.0	0.42	
5400	1032	1035	1034	114.0	0.19	
6000	1144	1147	1146	112.0	-0.14	
6600	1268	1269	1269	123.0	0.14	
7200	1385	1384	1385	116.0	0.02	
7800	1501	1501	1501	116.7	-0.05	
8400	1620	1622	1621	119.8	0.05	
9000	1738	1740	1739	118.0	0.05	

Gauge Factor: 5.0845 psi/µs Regression Zero Reading: 156.27

Calculated Pressure (psi) = $G * (R_1 - R_0)$

" Note: The above calibration uses a linear regression method. The Zero Reading shown is ideal for straight line computation and does not usually agree with the actual no-load reading.

** Linearity = ((Calculated Pressure - Applied Pressure) / Max. Applied Pressure) x 100%

Civil Solution Consultants Ltd., Pressure Transducer Calibration

CIVIL SOLUTION CONSULTANTS LTD.

Operation Off: No.413-414, Aung Thitsar St., 48 Ward, North Dagon Township, Yangon, Myanmar, 11421

Tel.: +95-9-5003281, +95-9-5077153, +95-9-798476843

EER NG COL

PE-0554

LOAD CELL GAUGE FACTOR DETERMINTION

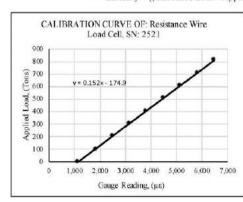
Type: Resistance Wire Load Cell Calibration No : CSC-63-23-CEP-2521-RWL Calibration Date: 07/09/2023 Number : CEP

Number : 2521 Ambient Temp : 34.0 Deg C Technician: AH

Max: Capacity: 0 ~ 1000 Tons Jack Eff: Area: 227.19 in2 Checked By : Daw Yi Yi Khin

PG SN: : 1106164807 Recommended Next Calibration: 06/09/2024

This calibration has been carried out by using Pressure Gauge calibrated by DRI, Serial No. 1106164807, page above Cert No: P-065-23/26-06-2023 .


Applied Pressure	Applied Loading (Ton)		rom CR-800/10 C-32K Readout (Change	Linearity (% Max: Load)
(PSI)	Loading (10n)	Cycle 1	Cycle 2	Avg:		
0.00	0	1137	1137	1137	0	
1,000	101	1830	1830	1830	693	0.53
2,000	203	2489	2489	2489	659	0.31
3,000	304	3151	3151	3151	662	0.26
4,000	406	3816	3816	3816	665	0.15
5,000	507	4488	4495	4492	676	0.36
6,000	609	5156	5130	5143	651	-0.01
7,000	710	5824	5818	5821	678	0.24
8,000	811	6492	6486	6489	668	0.31
0.00	0	1138	1138	1138		

0.1520 1138.00 Gauge Factor: tons/ue Regression Zero Reading:

Calculated Load (Tons) = $G * (R_1 - R_0)$

The above calibration uses a linear regression method. The Zero Reading shown is ideal for straight line * Note : computation and does not usually agree with the actual no-load reading.

** Linearity = ((Calculated Load - Applied Load) / Max. Applied Load) x 100%

CIVIL SOLUTION CONSULTANTS LTD.

Operation Off: No.413-414, Aung Thitsar St., 48 Ward, North Dagon Township, Yangon, Myanmar, 11421.

Tel: +95-9-5003281 +95-9-5077153 +95-9-798476843 ISO 9001:2015 Certified

PE-0554

CIVIL

LOAD CELL GAUGE FACTOR DETERMINTION

Type: Resistance Wire Load Cell

Number : CEP

Seral Number : 2522

Max: Capacity : 0 ~ 1000 Tons Jack Eff: Area: 227.19 in2

PG SN: : 1106164807

Calibration No : CSC-64-23-CEP-2522-RWL

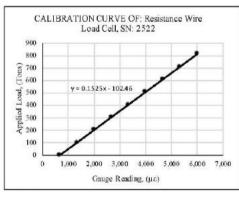
Calibration Date: 07/09/2023

Ambient Temp: 34.7 Deg C Technician : AH

Checked By : Daw Yi Yi Khin

Recommended Next Calibration: 06/09/2024

This calibration has been carried out by using Pressure Gauge calibrated by DRI, Serial No. 1106163807, page calibrated Cert No: P-065-23/26-06-2023


Applied Pressure (PSI)	Applied		rom CR-800/10 2-32K Readout (Change	Linearity (% Max: Load)
(rsi)	Loading (Ton)	Cycle 1	Cycle 2	Avg:	367	4Z 20
0.00	0	666	666	666	0	
1,000	101	1329	1350	1340	674	0.21
2,000	203	2006	2004	2005	666	0.15
3,000	304	2670	2667	2669	664	0.17
4,000	406	3344	3336	3340	672	0.22
5,000	507	4010	3970	3990	650	-0.01
6,000	609	4680	4646	4663	673	0.07
7,000	710	5350	5307	5329	665	0.13
8,000	811	6019	5969	5994	665	0.19
0.00	0	666	668	667		

Gauge Factor: 0.1525 tons/µε Regression Zero Reading: 668.00

Calculated Load (Tons) = $G * (R_1 - R_0)$

The above calibration uses a linear regression method. The Zero Reading shown is ideal for straight line * Note: computation and does not usually agree with the actual no-load reading.

** Linearity = ((Calculated Load - Applied Load) / Max. Applied Load) x 100%

2: Observed Applied Load vs Pile Top Settlement (Summary)

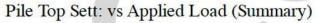
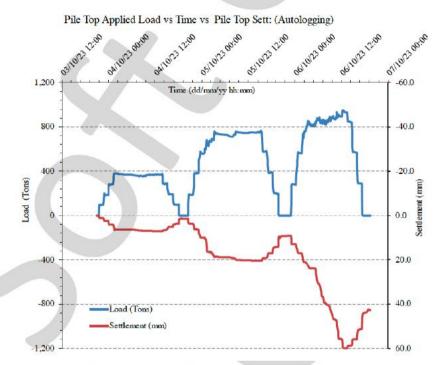
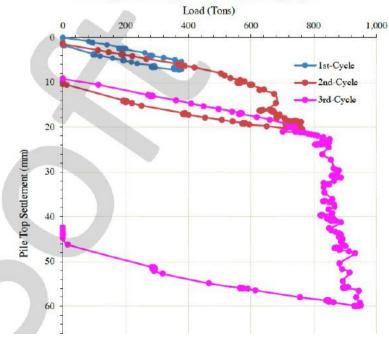
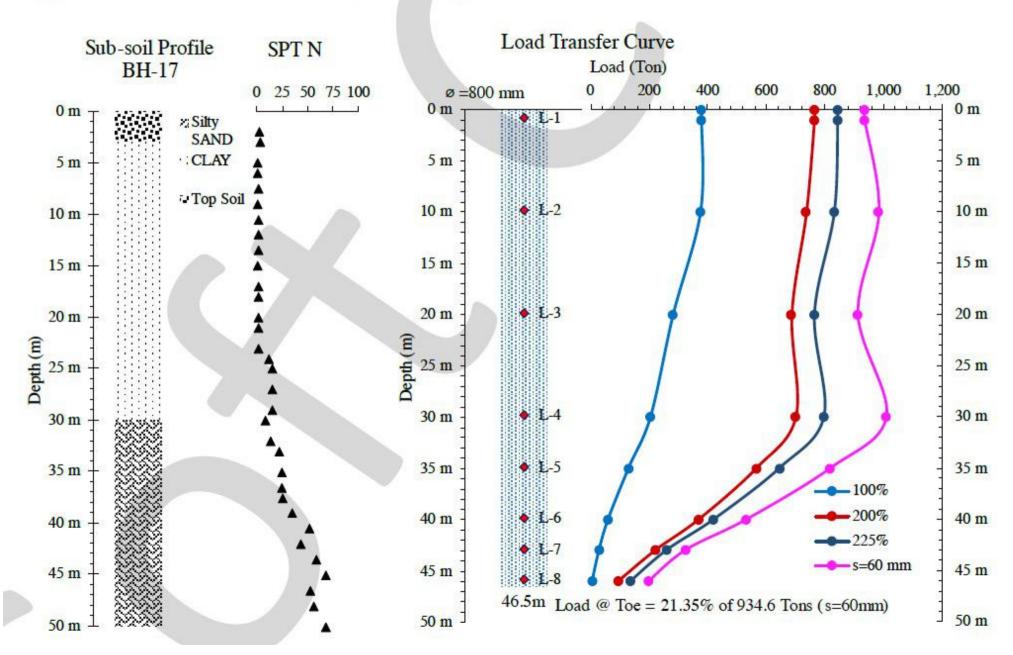
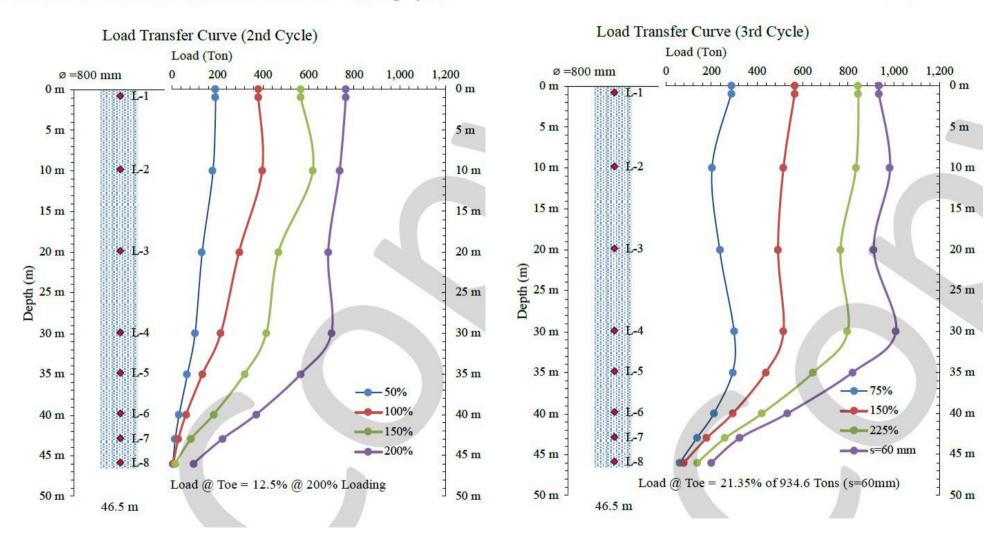



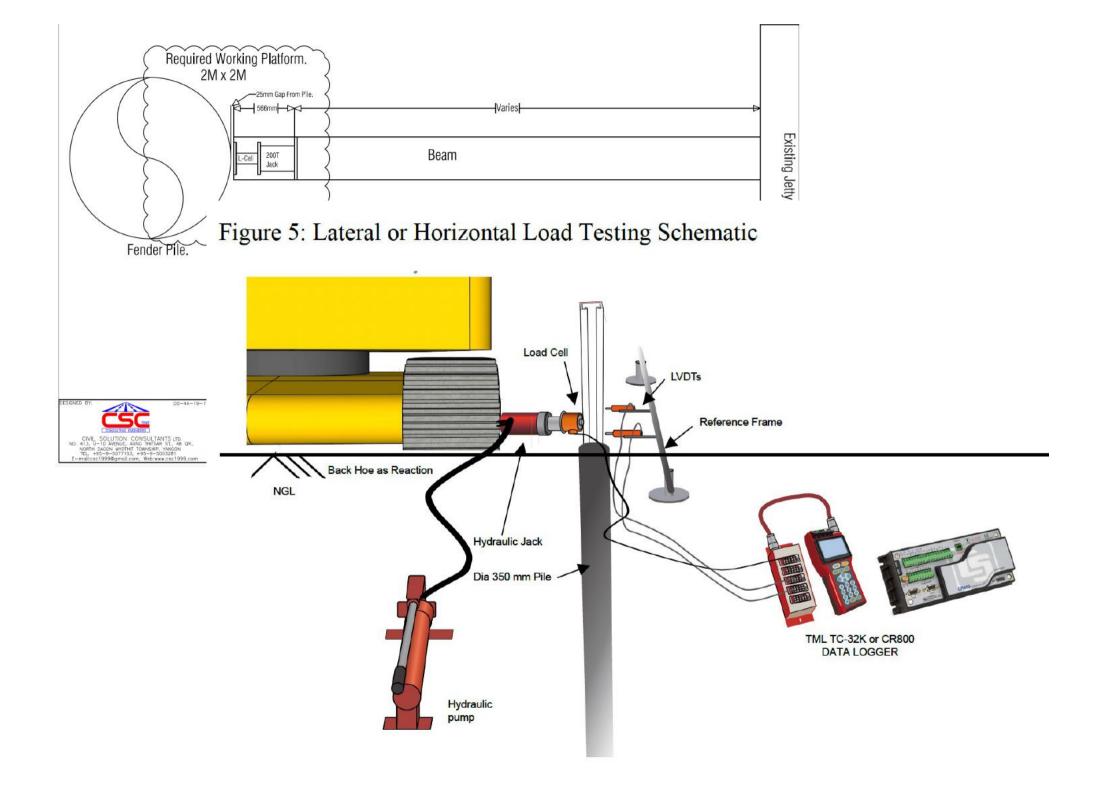
Figure A4: Pile Top Applied Load vs Time vs Top Settlement (Auto Logging)


Figure 1: Load Transfer Curve (Summary) with Sub Soil Data BH-17

Load Transfer Curve and Unit Skin Friction of 2nd Loading Cycle

Load Transfer Curve and Unit Skin Friction of 3rd Loading Cycle



Kanthayar Project

Static Pile Load Test With Kentledge Sys
Shangrila Kandawgyi Project

Myanmar Petroleum Products Storage and Distribution Terminal Thilawa Project Thanlyin, Myanmar (Horizontal Load Test Photographs)

System

Hydraulic Jacks, & LVDTs

Operating Electric Pump

Data Logger Panel

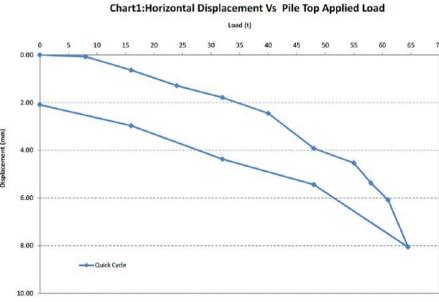
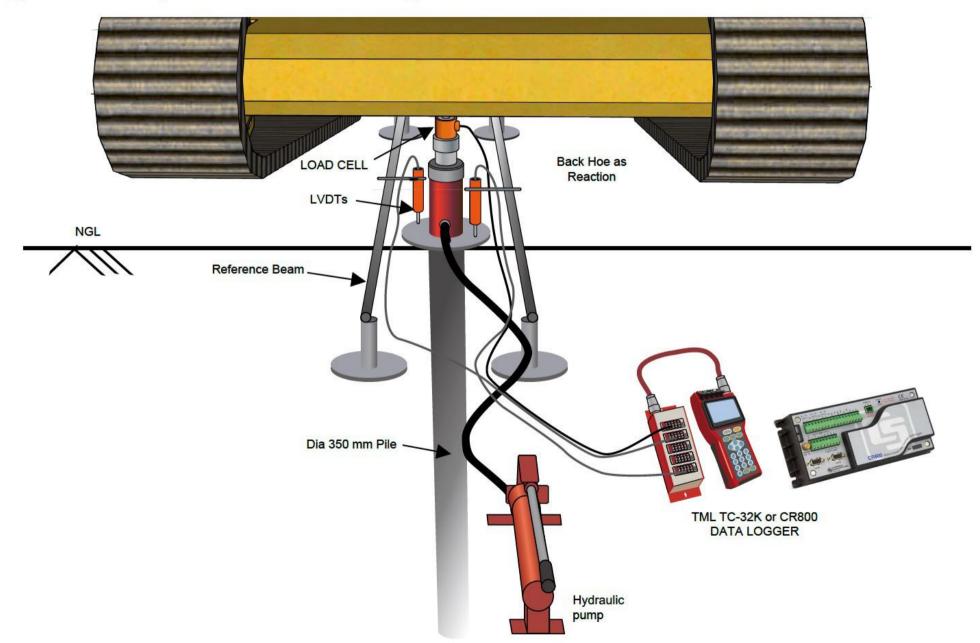
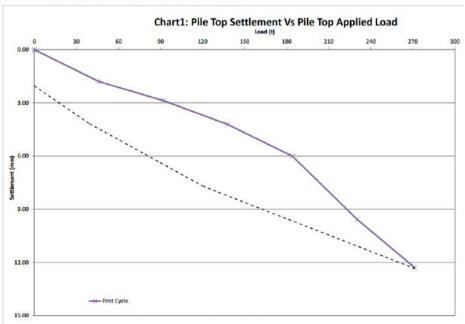



Figure 3: Compression Load Testing Schematic

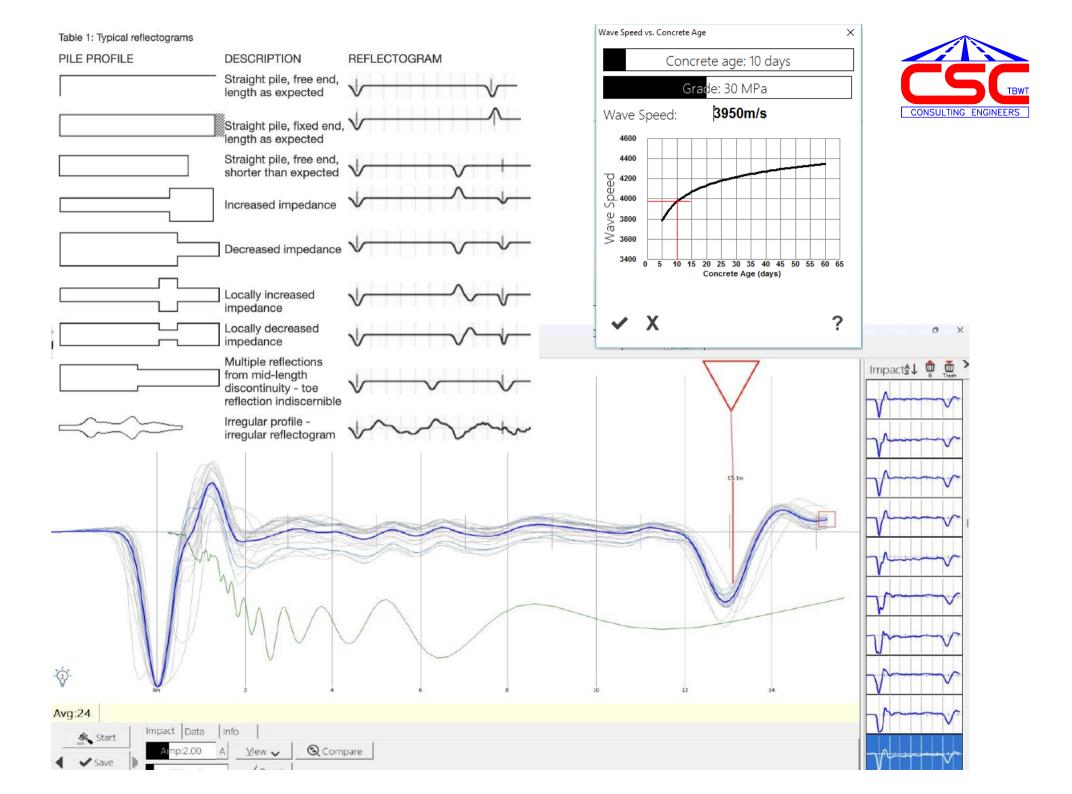
Myanmar Petroleum Products and Distribution Terminal Thilawa Project, Thanlyin, Myanmar

(Static Axial Compression Load Test Photographs)

Kentledge System


Hydraulic Jacks, Load Cells & LVDTs

Operating Electric Pump



Data Logger Panel

: PIT/SIT Testing Photo on Bored Pile / Spun Pile

ASTM D 5882 - 07 Compliance Statement

I hereby confirm that the PET system, running PET Version 3.0.0 (or higher) meets, or exceed, the requirements of ASTM Standard D5882-07.

Date: 1/1/2008

Developing, manufacturing and marketing of deep foundations quality assurance NDT equipment since 1996

PET system S/N	25332 (3322)		
Date	2022-07-12		

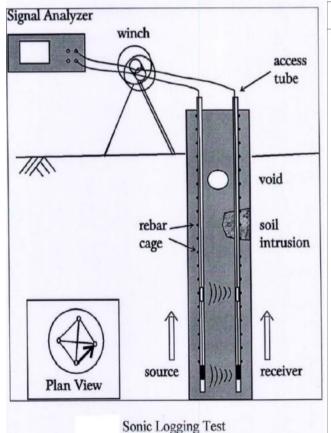
Declaration of conformance TO ASTM D5882-16

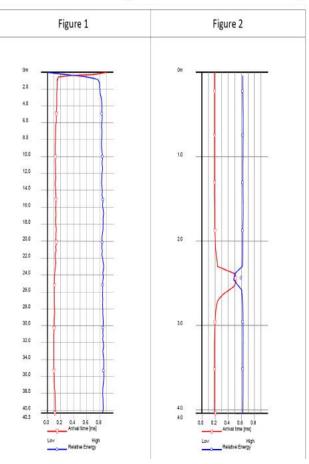
I hereby confirm that the above PET system running PET Version 3.02 (or higher) complies with the requirements of ASTM Standard D5882-16.

CERTIFICATE OF In-house CALIBRATION

EKITICATE OF III-IK	JOSE CALIDICATION	_
Calibration Date	2022-07-12	
Valid till:	2025-07-12	

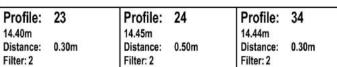
I hereby certify that the above PET sensor was successfully calibrated according to all the requirements of ASTM standard D5882-16 using the in-house method CALPT02

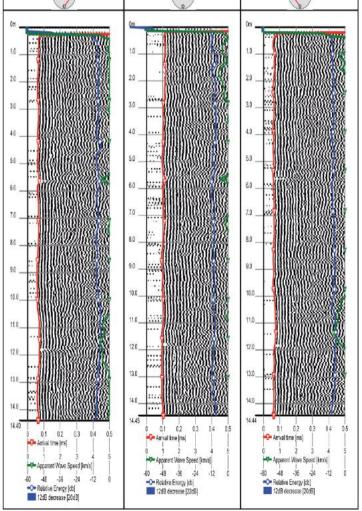




ASTM D6760

SONIC LOGGING TEST (ULTRASONIC CROSS-HOLE)

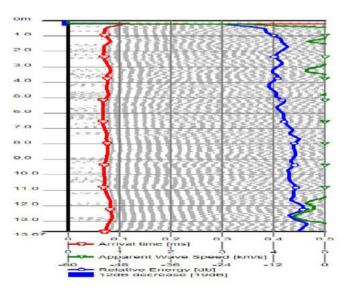




P2-BP1

2/20/19

Diameter: 0.80m



Testing CHUM System

Shay Gyi Bridge Project, Yargyi-Kalaywa Road

Transducers Results

PDA and DLT

ALLNAMICS PDR PILE TESTING SYSTEM for PDA and DLT

Pile Driving Analysis (PDA) and Dynamic Load Testing (DLT)

The Hague Office Waterpas 98 2495 AT The Hague The Netherlands Tel: +31703077499

Heemskerk Office De Trompet 1585 1967 DB Heemskerk The Netherlands Tel: +31251245752

Tyler Office 1411 Cumberland Rd Tyler, TX 75703 U.S.A. Tel: +19032160038

Singapore Office 3 Joo Koon Crescent 629008 Singapore Tel: +6597713635

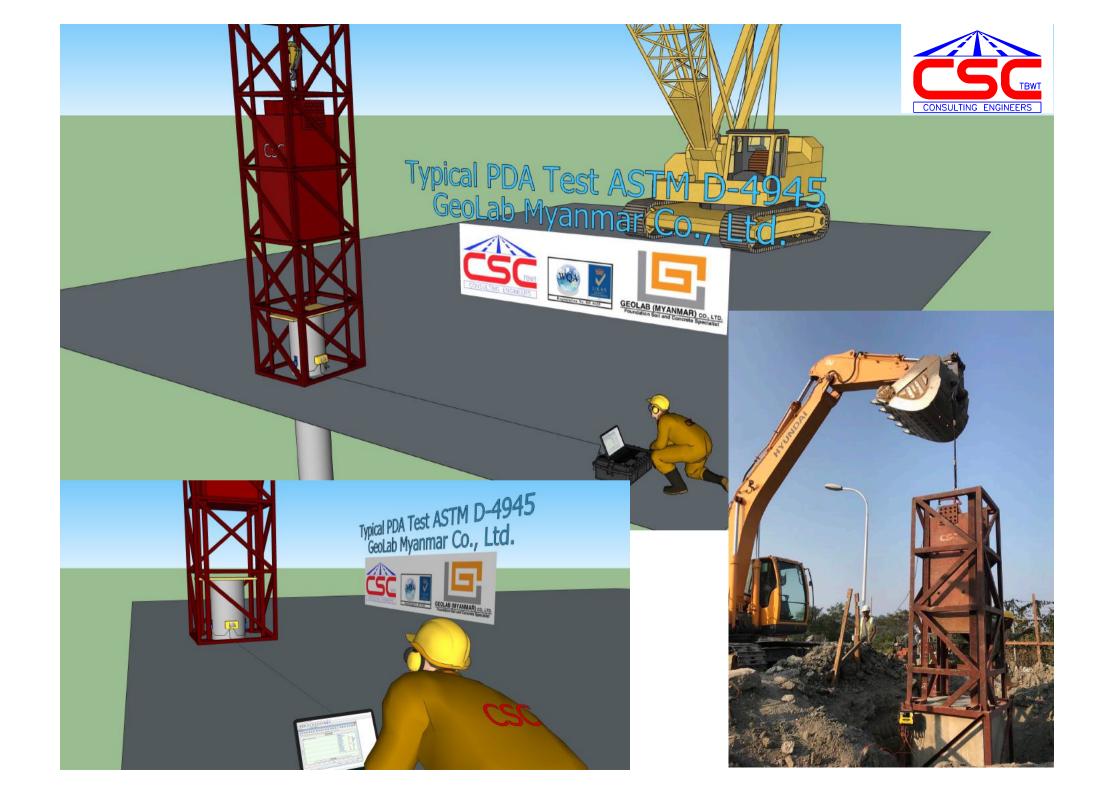
info@allnamics.e

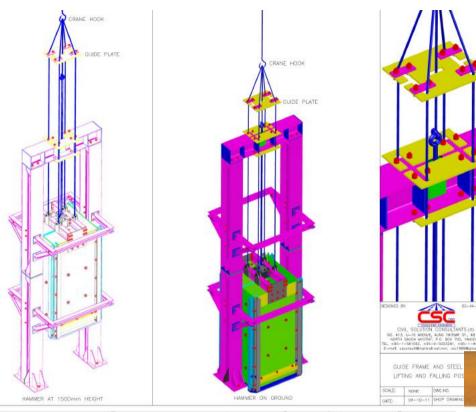
Combined acceleration strain transducers, multipurpose template, for transducer mounting and transport and transducers connectors with protection caps.

ALLNAMICS PDR PILE TESTING SYSTEM for PDA and DLT

Features:

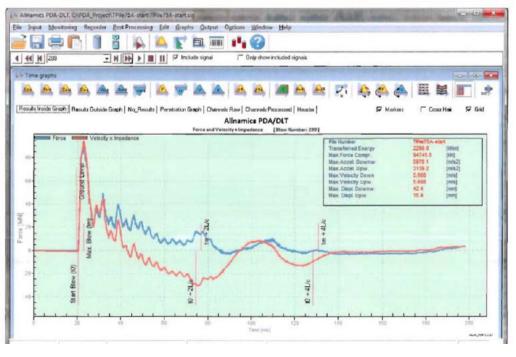
- WiFi or ethernet connection to a Windows PC laptop
- 4 channels (easy upgrade to 8 channel monitoring under development)
- Adjustable sample rate (up to 48 kHz per channel)
- 24 bit conversion
- Internal Solid State recorder for signal backup
- 6 hrs operational battery life (16 hrs standby)
- Class IP67 housing
- Robust design with easy magnetic stowaway system for excess cable
- Fully compatible with intelligent combined transducers (USID)
- Integrated test box (to automatically check the transducers during mounting)
- · Software program for monitoring, processing and reporting included



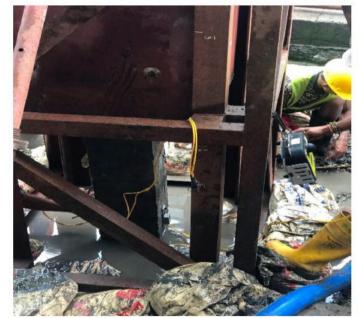


DYNAMIC PILE LOAD TEST FOR PUSHED PILE

DYNAMIC PILE LOAD TEST FOR BORED PILE



Pile Dynamic Analysis Dynamic Load Test


ALLNAMICS PDR PILE TESTING SYSTEM for PDA and DLT

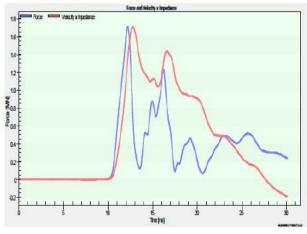
Test Pile

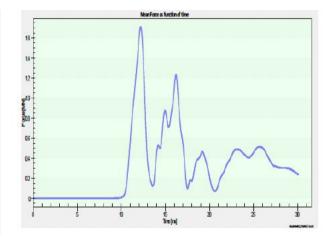
PDA-DLT Equipment

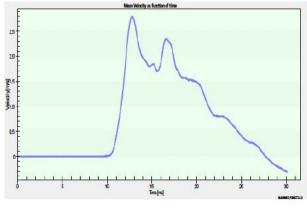
PDA Monitoring Results: P3-No.5

Pile No. : P3-No.5

Date of Testing : 13.8.2019


Pile Penetration : 7.25 (m)


Measured Length : 7.45 (m)


Total Length : 8.00 (m)

Transferred Energy : 12.4 (kNm)

Stat: Resistance RMX : 1059.0 (kN)

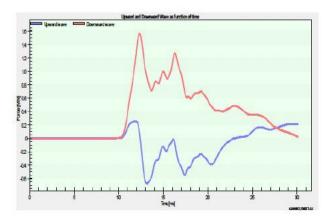


Table 1. Summary of Pile Record

Pile No.	Date Driven	Total Length (m)	Measured Length (m)	Penetration (m)	Working Load(kN)	
P3-No.5	P3-No.5 25.7.2019		7.45	7.25	400	
P1-No.5	31.7.2019	8.00	7.35	7.10	400	
L1-No.5	30.7.2019	8.20	7.50	7.20	400	
P1-No.3	31.7.2019	7.50	6.80	6.60	400	

Table 2. Summary of Field Results

Pile No.	Date Tested	Field Static Resistance	Max. Comp: Stress (MPa)	Transferred Energy (kNm)	Pile Integrity (BTA %)
		(kN)	ouess (Mra)	Energy (KIVIII)	(DIA 70)
P3-No.5	13.8.2019	1059.0	27.3	12.4	100%
P1-No.5	15.8.2019	700.1	21.4	18.5	100%
L1-No.5	13.8.2019	773.8	20.2	11.1	100%
P1-No.3	13.8.2019	629.8	18.7	11.7	100%

Table 3. Summary of Signal Matching Results

Pile No.	Skin Friction	Toe Resistance	Total	Pile Head	Pile Head
	Mobilized(kN)	Mobilized(kN)	Resistance	Settlement@	Settlement@
			(kN)	WL (mm)	2WL (mm)
P3-No.5	487	563	1050	1.68	5.52
P1-No.5	209	563	772	3.16	8.73
L1-No.5	249	563	811	2.72	8.85
P1-No.3	230	442	672	3.15	7.61

CALIBRATION SHEET

PDA-STRAIN SENSOR

Transducer information:

Serial number : 501

Manufacturer : Allnamics Pile Testing Experts
Calibration factor : 4.76 (mV/V, @ 2000 uE)

Zero balance : <u>0.46</u> mV/V
Calibration date : <u>30-04-2018</u>
Calibrated by : MVE

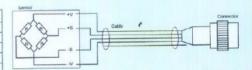
1) The end user is responsible for a recalibration of the transducer.

Typical sensor specification:

el : 4 Foil gages TLM FLA-2-350-23

Manufacturer : TLM, Allnamics

Range : +/- 1500 uE Max rating : +/- 4000 uE


Zero : +/- 10 mV Non-linearity : 1 % FS

Excitation : 10 V Operating range : -20 to 60 °C

Calibration equip. : Traceable to Metric Control

Wiring and mounting:

Signal	Sensor	Cable	Connector
+V	Red	Red	A
+5	Blue	Green	В
-S	White	White	C
-V	Black	Blue	E
		Chield	E .

Connector: MIL-C-26482, 10-06, male plug

Cable : 4x AWG24/7, PUR, water blocking, Allnamics.

SID : Sensor Identification
Dimensions : 122x40x10 mm (lxbxh)

IP class : 66

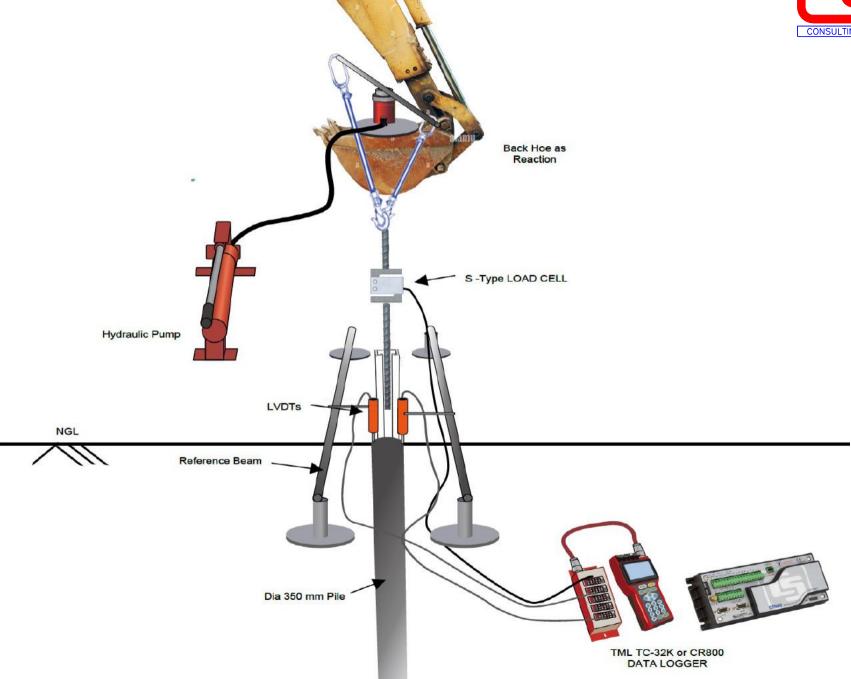
Mounting : 2x DIN 912, M8

ran : 65 mn

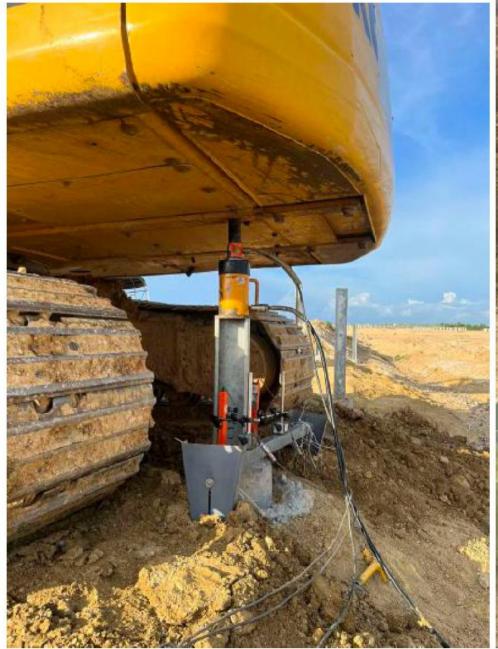
Allnamics Pile Testing Experts B.V.

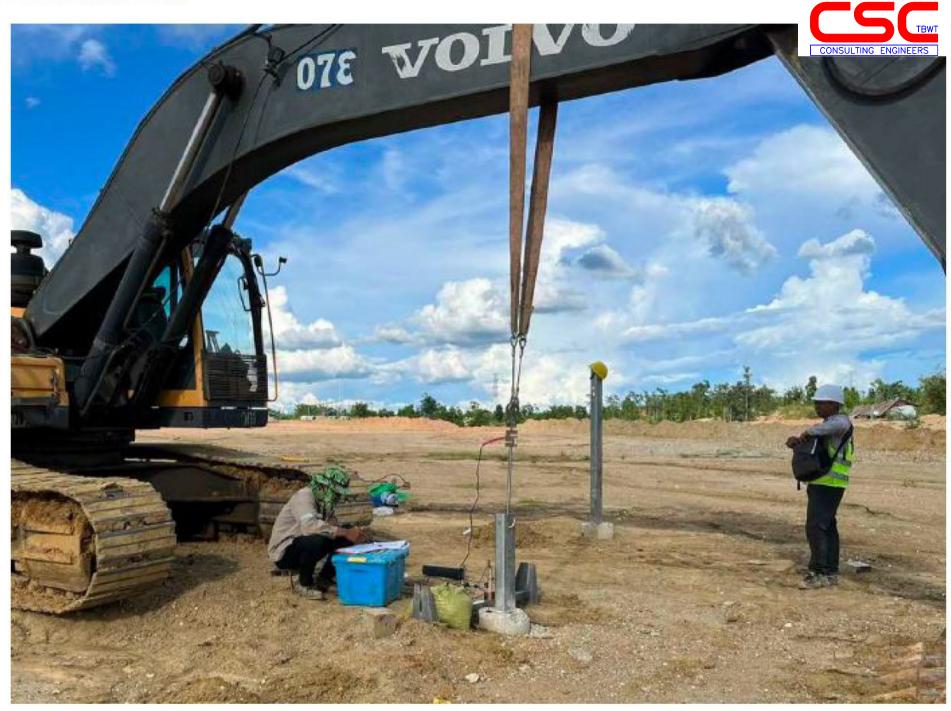
Address : Waterpas 98

2495 AT The Hague The Netherlands


Web : www.allnamics.eu Tel. : +31 - 70 - 3077499

This certificate shall not be reproduced.


Figure 4: Tension or Uplift Load Testing Schematic



G3: Tension Test

Minbu Solar Farm Project, Phase 2, Magway Region

Proposed Loading Cycle For Tension/Pull out Test on

3.0

350mm Dia Pile

QUICK LOAD TEST (QLT)

1st Cycle Working Load =

13.7 kN 1.37 tonnes Shanxi Construction & Investment Group (Myanmar) Co., Ltd.

Times = 2nd Cycle Test Load = 27.4 kN 3rd Cycle Test Load = 41.1 kN

2.74 tonnes **4.11** tonnes (11/07/2022) Rev01

CSLRG Jack Model:

Minimum Loading times for nile test

Test Load as %WL	Min Holding	Recording	kN	Min (kN)	Max (kN)	kN	Min (tonne)	Max (tonne)	REMARKS
0%	-	-	0.00	0.0	0.0	0.00	0.0	0.0	
25%	4min	4min (2)	3.43	3.2	3.6	3.4	0.3	0.4	
50%	4min	4min (2)	6.85	6.6	7.2	6.9	0.7	0.7	
75%	4min	4min (2)	10.28	9.8	10.8	10.3	1.0	1.1	
100%	5min	(3)	13.70	13.0	14.4	13.7	1.3	1.4	
125%	4min	4min (2)	17.13	16.2	18.0	17.1	1.6	1.8	
150%	4min	4min (2)	20.55	19.6	21.6	20.6	2.0	2.2	
175%	4min	4min (2)	23.98	22.8	25.2	24.0	2.3	2.5	
200%	5min	(3)	27.40	26.0	28.8	27.4	2.6	2.9	
225%	4min	4min (2)	30.83	29.3	32.3	30.8	2.9	3.2	
250%	4min	4min (2)	34.25	32.6	36.0	34.3	3.3	3.6	
275%	4min	4min (2)	37.68	35.8	39.6	37.7	3.6	4.0	
300%	5min	(3)	41.10	39.0	43.2	41.1	3.9	4.3	
250%	4min	4min (2)	34.25	32.6	36.0	34.3	3.3	3.6	
200%	4min	4min (2)	27.40	26.0	28.8	27.4	2.6	2.9	
150%	4min	4min (2)	20.55	19.6	21.6	20.6	2.0	2.2	
100%	4min	4min (2)	13.70	13.0	14.4	13.7	1.3	1.4	
50%	4min	4min (2)	6.85	6.6	7.2	6.9	0.7	0.7	
0%	5min	(5)	0.00	0.0	0.0	0.0	0.0	0.0	RING COU
						·		Gir	

- Notes:

 (1). The loading for quick load test shall applied in at least 2 increments.

 (2). For each load increment, the load shall be maintained for minimum period of 5min. or until equilibrium is reached. whichever is greater. Equilibrium shall mean a rate of settlement not exceeding 0.25mm in one increment.
- (3). The full test load shall remain in place for a minumum period of 5min, or until final equilibrium is reach. Recording shall be recorded in 4min. interval.
- (4). The full test load shall then be unloaded in not less than 2 decrements with intervals of not less than 5min., with recovery being measured at each unloading stage. Recording shall be recorded in 4 minutes interval.
- (5). The final rebound shall be recorded in 5min after the entire load has been removed.

GEOTECHNICAL

Myit-nge New Railway Bridge Project Dynamic Load Test

GeoLab Myanmar Co., Ltd.

Instrumentation Report

Figure 6: Load Test Sequence and Cargo Arrangement for Static Load Cases

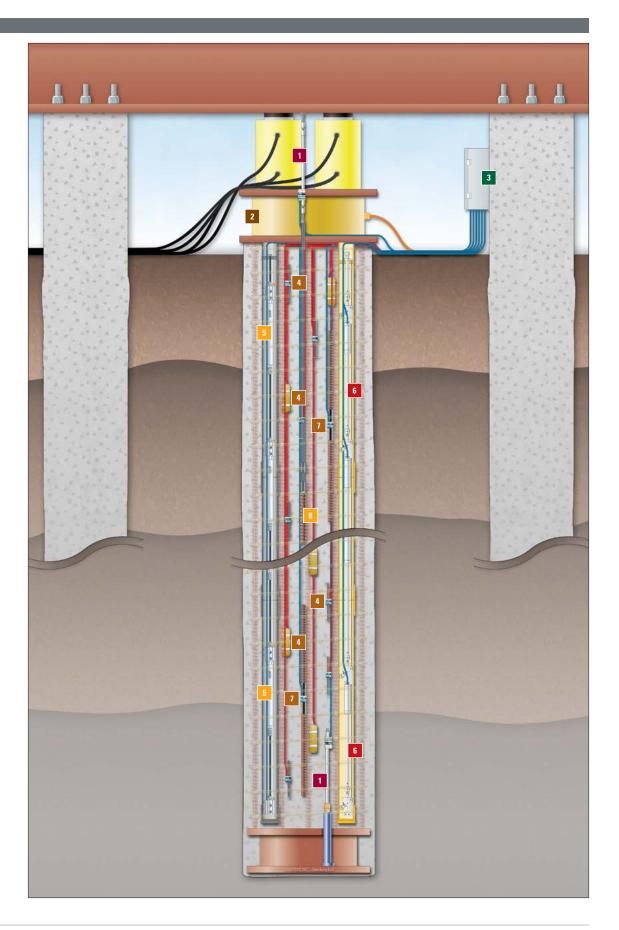
Figure 11: Load Case IV



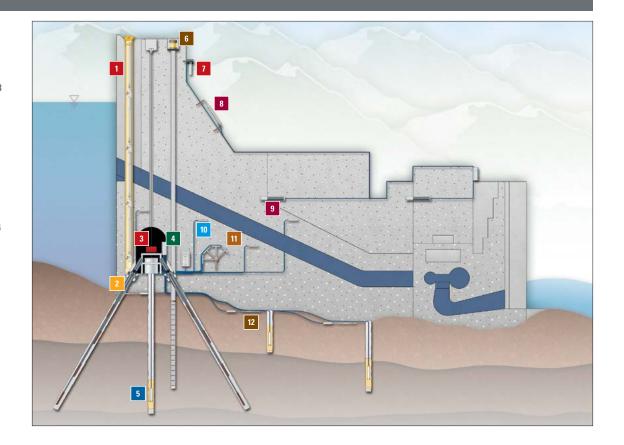
Figure 13: Avg: Stress Intensity of Static Loading CASE I,II,III,IV Deep Excavation Strut Monitoring Work Avg: Stress Changes @ Staic Test 40 Stress MPa or N/mm2 (-)Compression,(+)Tension, Load Case II Load Case III Load Case IV Load Case I R6(Top) R6(Bottom) C29(Top) -C29(Bottom) P4(Top) -P4(Bottom) -C12(Top) -C12(Bottom) -60 110 Figure 19: Dynamic Avg Stress Intensity Changes @ Train Speed 10mph 30 10 50 70 90 -10 Time (min) 60 Data-Logger Set-up Avg Dynamic Stress Changes @ (Train Speed 10mph) 40 CONSULTING ENGINEERS Stress (MPa or N/mm2) (-)Compression,(+)Tension, 0 0 -40 R6(Top) C29(Bottom) R6(Bottom) C29(Top) P4(Top) C12(Bottom) P4(Bottom) C12(Top) -60 40 20 60 80 100 120 0 140

Time (s)

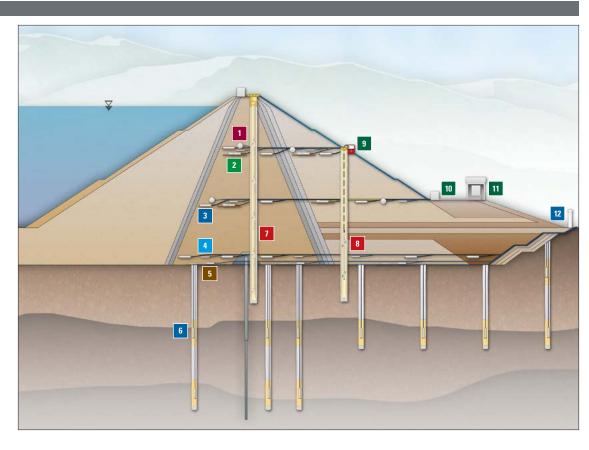
A Role of Geotechnical Engineer



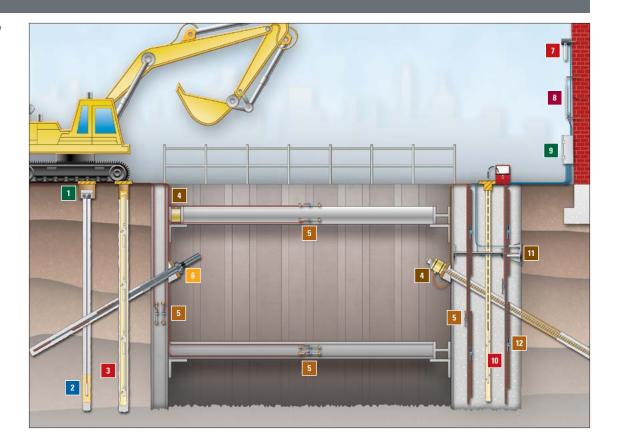
- Scope of Work: Site Investigation and Field Testing, Laboratory Testing, Design and Construction Supervision, Verified Actual Field.
- Duty: Must be professional, positive thinking, innovative and technical support.
- Responsibility: Testing, Design, Site
 Supervision and Project Management (if any).
- Skills: Task Risk Assessment (TRA), Field Oriented, Practicing in HSE Policy.
- Ultimate Goal: Environmental Prevention,
 Public Safety and Solution Provision.


Pile Testing Instrumentation

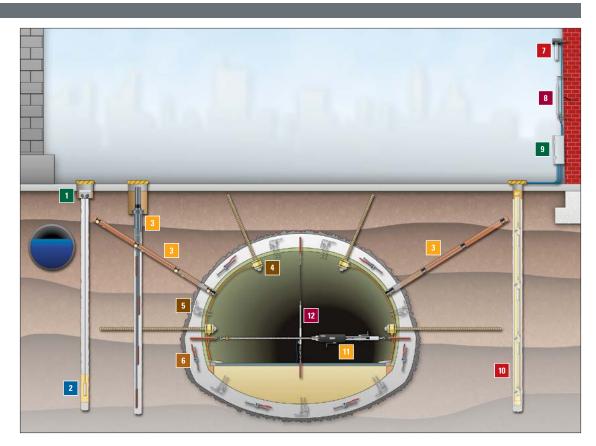
- 1 Displacement Transducers | 05
- 2 Load Cells | 11
- 3 Multi-Channel Dataloggers | 18
- 4 Strain Gauges | 04
- 5 Retrievable Extensometers | 06
- 6 In-Place Inclinometers | 13
- 7 Sister Bars | 04
- 8 Telltales | 07


Concrete Dam Instrumentation

- 1 In-Place Inclinometers | 13
- 2 Extensometers | 06-07
- 3 Pendulums | 14
- 4 Multi-Channel Dataloggers | 18
- 5 Piezometers | 08-09
- 6 Load Cells | 11
- 7 Tiltmeters | 14
- 8 Crackmeters | 05
- 9 Embedment Jointmeters | 05
- 10 Temperature Gauges | 22
- 11 Embedment Strain Gauges | 04
- 12 Earth Pressure Cells | 11


Earth Dam Instrumentation

- 1 Soil Strainmeters | 05
- 2 Settlement Sensors | 10
- 3 Heavy Duty Piezometers | 08
- 4 Temperature Gauges | 22
- 5 Earth Pressure Cells | 11
- 6 Piezometers | 08-09
- 7 In-Place Inclinometers | 13
- 8 Inclinometer Probes | 12
- 9 Readouts | 15-16
- 10 Multiplexers | 18
- 11 Multi-Channel Dataloggers | 18
- 12 Weir Monitors | 09


Deep Excavation Instrumentation

- 1 Single-Channel Dataloggers | 17
- 2 Piezometers | 08-09
- 3 In-Place Inclinometers | 13
- 4 Load Cells | 11
- 5 Strain Gauges | 04
- 6 Extensometers | 06-07
- 7 Tiltmeters | 14
- 8 Crackmeters | 05
- 9 Multi-Channel Dataloggers | 18
- 10 Inclinometer Probes | 12
- 11 Jackout Pressure Cells | 11
- 12 Sister Bars | 04

Tunnelling Instrumentation

- 1 Single-Channel Dataloggers | 17
- 2 Piezometers | 08-09
- 3 Extensometers | 06-07
- 4 Load Cells | 11
- 5 NATM Pressure Cells | 11
- 6 Strain Gauges | 04
- 7 Tiltmeters | 14
- 8 Crackmeters | 05
- 9 Multi-Channel Dataloggers | 18
- 10 In-Place Inclinometers | 13
- 11 Tape Extensometers | 07
- 12 Convergence Meters | 05

