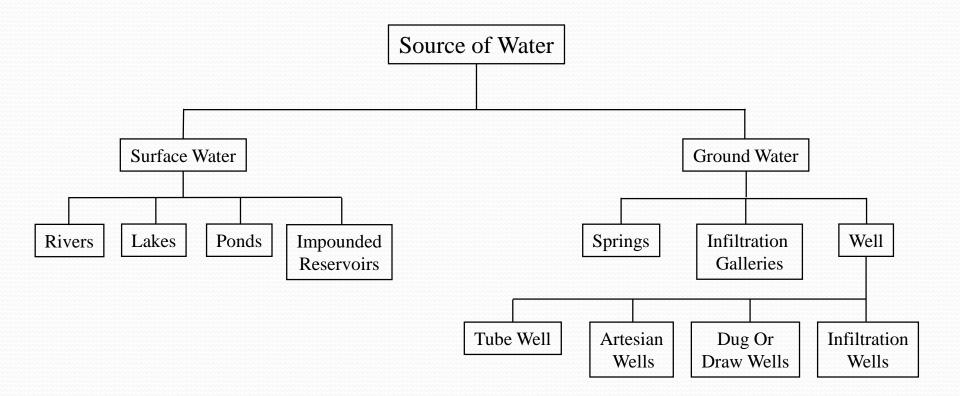
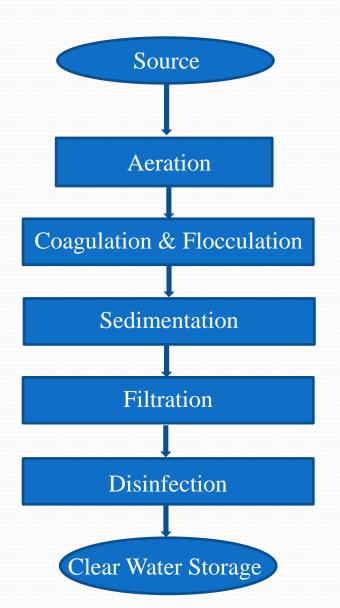
DESIGN EXAMPLE OF WATER TREATMENT SYSTEM (Modular Water Treatment Plant)

Engr. Win Naing B.E (Civil); Dip.Env.E; D.M.A F.Fed.MES ; A.E.R (1729) ; Hon F.AFEO ; P.E ; A.C.P.E Chairman Waterworks Engineering Group Services Co.,Ltd (WEG)

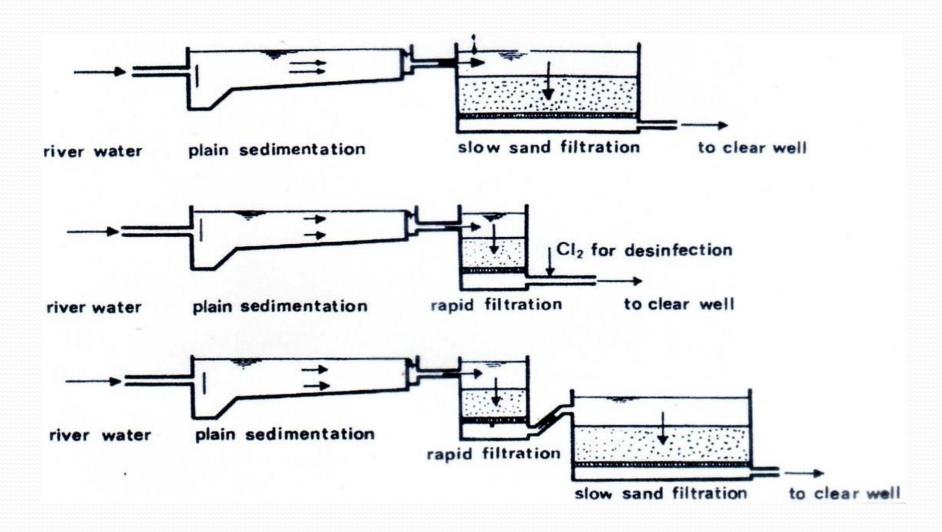
OBJECTIVES OF WATER SUPPLY SYSTEM

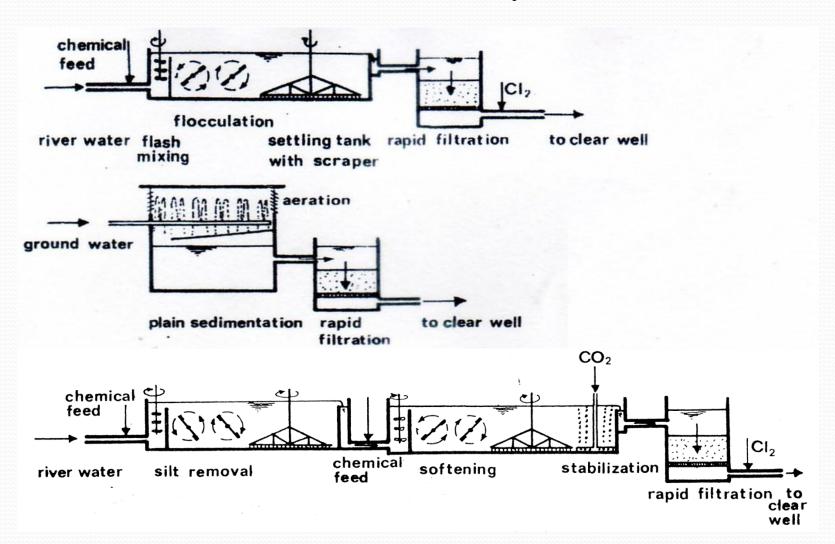

The broad objectives underlying any water supply system are:

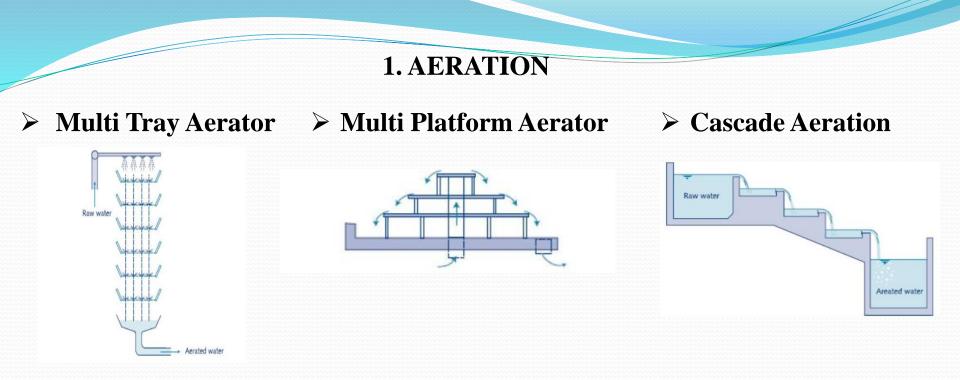
- 1) To supply safe and wholesome water to consumers
- 2) To supply water in adequate quantity
- 3) To make water easily available to consumers so as to encourage personal and household cleanliness.


FESIBILITY STUDY

- 1) Planning Period
- 2) Water Supply Areas
- 3) Future Population
- 4) Maximum Daily Water Demand
- 5) Evaluation and Selection of the Water Source
- 6) Size of the Water Treatment Plant
- 7) Treatment Plant Site
- 8) Financing

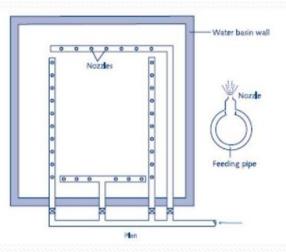



WATER TREATMENT PROCESS



SOME TYPES OF WATER TREATMENT SYSTEM (Conventional Treatment Systems)

SOME TYPES OF WATER TREATMENT SYSTEM (Conventional Treatment Systems)



Aeration with Diffuser

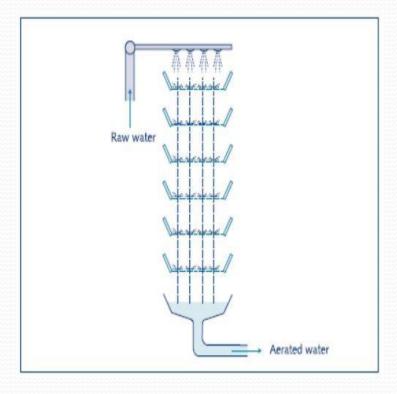
> Nozzled Spray Aerator

Ref : Small Community Water Supplies

> Multi Tray Aerator

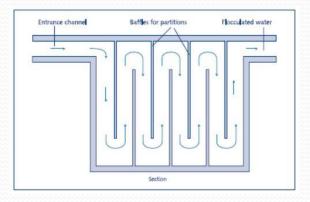
<u>Criteria</u>

Ref: Compilation of Water Supply and Treatment (India)

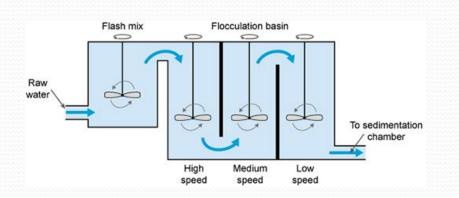

- No of Trays 4 ~ 9 Nos
- Height of Tray 30 ~ 75 cm
- Required space 0.013~0.042 m2 per m3/hr
- (8~26 gpm per sq.ft)

Ref: Small Community Water Supplies

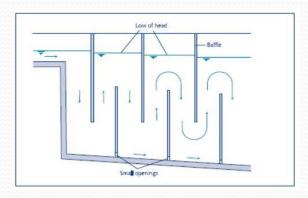
- No of Trays 4 ~ 8 Nos
- Height of Tray 30 cm
- Required space 0.02 m3/s per m2 (25 gpm per sq.ft)


Ref: Water Supply and Sewage

- Materials coke, slag, stone, ceramic ball
- Size 2~6 in (High rate), 1.5~2.5 in (Low rate)
- Perforation 1/2~3/16 in dia:, 3 in c/c spacing
- Required space 1~5 gpm per sq.ft



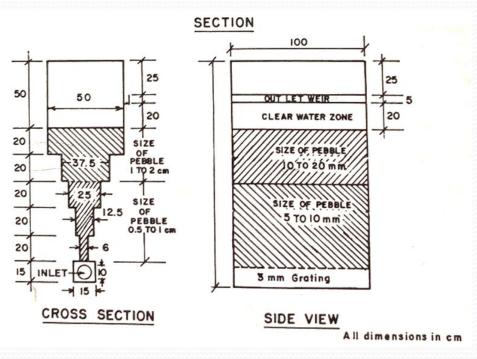
2. COAGULATION & FLOCCULATION


Horizontal-flow Baffled Flocculator


Mechanical Flocculator

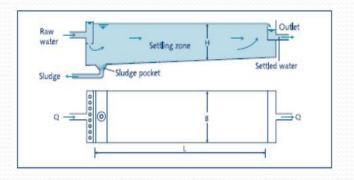
Vertical-flow Baffled Flocculator

Gravel-bed Flocculator

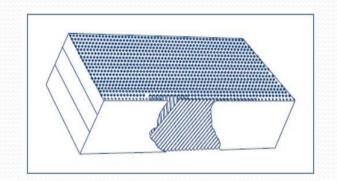


Gravel-bed Flocculator

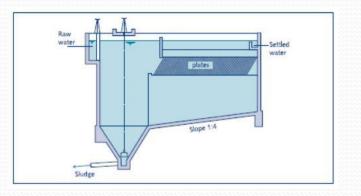
Criteria


- Flow rate
- Velocity gradient Rapid Slow
- Alum dose
- Flocculation time
- Gravel size
- Raw water turbidity
- Bed depth
- Head loss

- 10~200 m3/h
- 130~1230 s⁻¹
- 35~40 s⁻¹
- 20~60 mg/L
- 3~5 min
- 10~60 mm
- 10~300 NTU
- 1.5~3 m
- 0.01~0.2 m

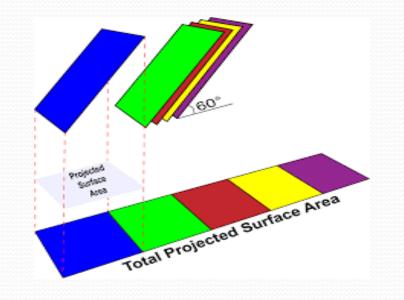


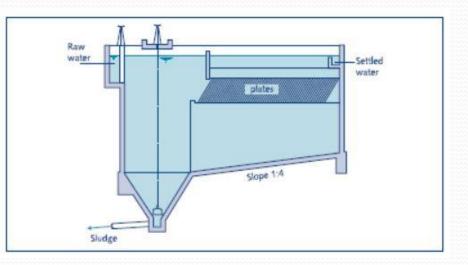
3. SEDIMENTATION


Plain Sedimentation Tank (Chemical Sedimentation Tank)

Tube Settler

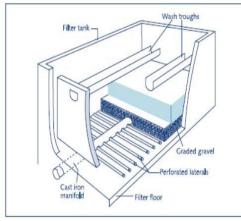
> Plate Settler

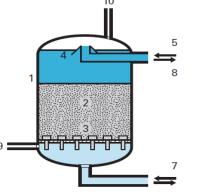



> PLATE SETTLER

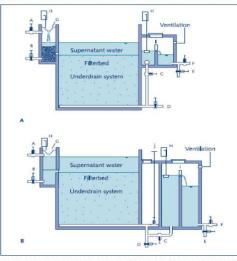
Criteria

- Typical loading rates
- •
- Overall basin loading
- •
- Detention time
- Plate settler angle of inclination
- Gap between plates
- Liquid depth


- 0.3~1gpm/ft2 (0.7~2 m/h) - 2~6 gpm/ft2 (5~15 m/h)
- 30 min
- 35°~60°
- 50~100 mm
- 3~5 m


4. FILTRATION

Rapid Sand Filter(Rapid Gravity Filter)

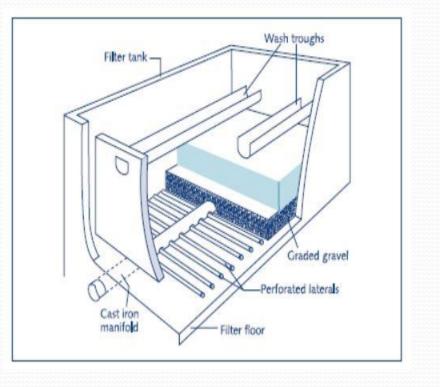

Rapid Sand Filter (Pressure Filter)

6

Filter body casing
 Filtering media
 Floor wtih nozzle
 Feeding chamber
 Raw water inlet
 Filtered water outlet
 Backwash water inlet
 Backwash air inlet
 Air blowdown

Slow Sand Filter

Rapid Sand Filter (Rapid Gravity Filter)

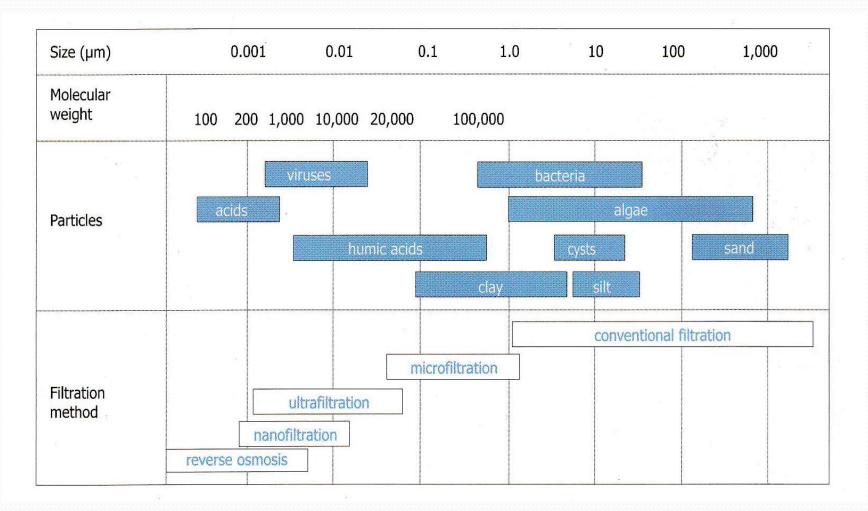

Criteria

- Flow rate
- Grain size
- Length- Width ratio
- Length of filter run

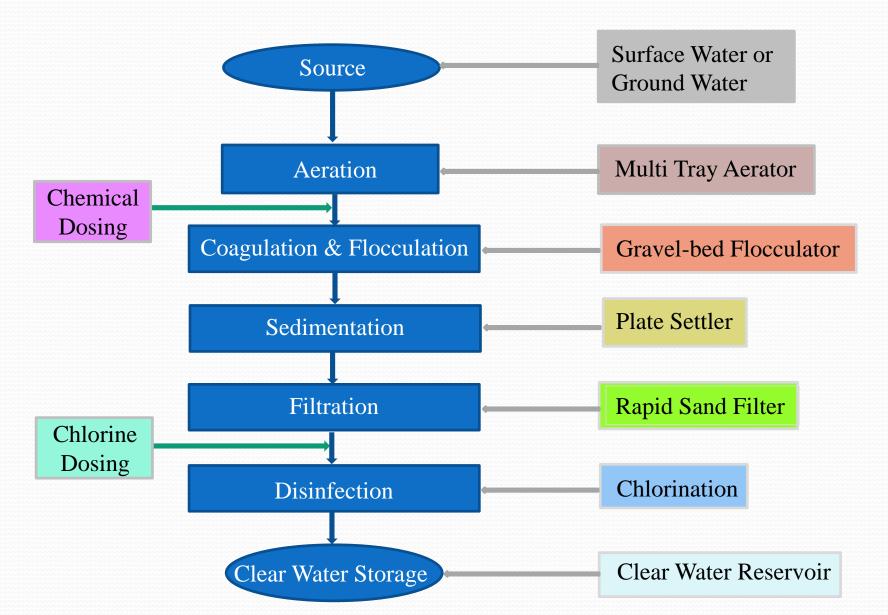
 $- 5 \sim 15 \text{ m}^3/\text{m}^2/\text{h}$

- 0.4~1.2 mm - 1: (1.25~1.33)

- 1~2 day



COMPARISON OF SLOW SAND AND RAPID GRAVITY FILTERS


Sr.No	Item	Slow Sand Filter	Rapid Gravity Filter
1	Rate of Filtration	100 to 200 lit/hour/sq.m of filter	3000 to 6000 liters/hour/ sqm. of
		area	filter area
2	Size of one unit	30m x 60m are varies from 500 to	6m x 8m To 8m x 10m are varies
		2000 sq.m.	from 40 to 80 sq.m
3	Depth of Filter Media	30cm.gravel 90-105cm. sand	45cm.grvel 75cm.or less sand.
4	Effective size of sand	0.25 to 0.35 mm. C_u =1.75	0.45 to 0.8mm. $C_u=1.6$
5	Distribution of	Uniform	Stratified smallest at top coarsest
	Particles		at bottom
6	Under-drainage system	Open jointed pipes or covered	Strainer pipes, laterals
		drains	discharging in C.I main.
7	Loss of head	9cm. initial to 1.2m final	0.3 m initial
			2.1 m final
8	Length of run between	20-60 days	24-60 hours
	cleanings		
9	Method of cleaning	Scrapping of surface and washing	Scour by back washing and
		down by hoses	removal of dislodged particles by
			upward flow
10	Penetration of	Very Small	Deep
	suspended matter		

Sr.No	Item	Slow Sand Filter	Rapid Gravity Filter
-			
11	Amount of wash water used	0.2 to 0.6% of water filter	1 to 4% of water filter
	in cleaning		
12	Preparatory treatment	Aeration alone or with	Aeration flocculation and
		flocculation and setting	setting.
		C	C
13	Cost of construction	Higher	Lower
14	Cost of operation	Lower	Higher
15	Depreciation of plant	Lower	Higher
16	Quality of raw water	It may not be treated with	Treatment with coagulants
		chemicals, but should not	is essential.
		have turbidity more than 50	
		ppm.	
17	Area	Very Large	Small Area
18	Construction	Simple	Complicated.
		-	-
19	Flexibility in operation	Not possible	Possible
20	Skilled supervision	Not required	Most essential

APPLICATION FIELDS FOR MEMBRANE FILTRATION

COMPONENTS OF WATER TREATMENT PROCESS

DESIGN CALCULATION EXAMPLE

<u>Given Data</u>

Source	- Surface water or Ground water
Turbidity	- High NTU value
Iron & Manganese	- Highly Content
Design population	- 5000 inh:
Per Capita water supply	- 40 lpd *
Power available duration	- 4 a.m. to 10 a.m. and 2 p.m. to 12 p.m.
Pumping hours	- 8 hrs (4 a.m. to 8 a.m. and 2 p.m. to 6 p.m.)
Peak factor	- 2.16 **
Peak hours	- 6 a.m. to 10 a.m., 1 p.m. to 2 p.m., 5 p.m. to 6 p.m.

Peak hours and hourly demands are as follow:

- i. 20% of average hourly demand: 11 p.m. to 4 a.m.
- ii. 40% of average hourly demand: 4 a.m. to 5 a.m. and 10 p.m. to 11 p.m.
- iii. 60% of average hourly demand: 12 noon to 1 p.m.
- iv. 70% of average hourly demand: 2 p.m. to 5 p.m. and 8 p.m. to 10 p.m.
- v. 80% of average hourly demand: 5 a.m. to 6 a.m.
- vi. 90% of average hourly demand: 6 a.m. to 8 a.m.
- vii. 100% of average hourly demand: 10 a.m. to 12 noon

Water supply is continuous.

Continued Given Data

System Component	Design Capacity		
Water source	Peak day water demand		
Raw water main	Peak day water demand		
* Treatment plant	Peak day water demand		
Transmission main	Peak day water demand		
Distribution system	Peak hour water demand		

* For communities with population up to 20,000 and without flushing system;

1. Water supply through stand post – Min: 9 gpcd (40 Lpcd).....(Ref : MNBC)

In case of considering leakage percentage,

$$Q_{\text{peak hour}} = \frac{Q_{\text{average day}}}{f} \left(k_1 k_2 \frac{l}{100 - l} \right)$$

f = Unit conversion factor $k_1, k_2 = Constant$ l = Leakage percentage

CALCULATION

- Total demand
- Peak day demand*
- Average hourly demand
- Peak hour demand

Receiving Tank

Population Peak day demand Pumping Hour Design Flow

Choose, Detention time Required Volume = 5000 Person = 240 m³/d = 8 hr = 30 m³/hr = 0.5 m³/min

= 1.5 min = 1.5 min × 0.5 m³/min = 0.75 m³

Assume,	
Length	= 1.0 m
Width	= 1.0 m
So, Height	= 0.75 m
Ref : Small Con	mmunity Water Supplies

= 5000 x 40 L/d = 200,000 L/d $= 1.2 \times 200,000 \text{ L/d} = 240,000 \text{ L/d}$ $= 240 \text{ m}^3/\text{d}$ $= 240/8 = 30 \text{ m}^3/\text{h} (\text{Note: 1 day} = 8 \text{ hrs})$ $= 2.16 \times \text{average hourly demand}$ $= 2.16 \times 25,000 \text{ L/h} = 54,000 \text{ L/h} = 54 \text{ m}^3/\text{h}$

➢ <u>Aeration Tank</u>

= 5000 Person
= 40 lpcd
$= 0.04 \text{ m}^{3}/\text{d}$
= 8 hr
$= 30 \text{ m}^{3}/\text{hr}$

Assume,

Length	= 1.0 m
Width	= 1.0 m
Height of each Step	= 0.3 m

Check, Area = 1 m^2 Area/Flow = $0.033 \text{ m}^2/\text{m}^3/\text{hr}$ (Criteria $0.013 \sim 0.042 \text{ m}^2/\text{m}^3/\text{hr}$)

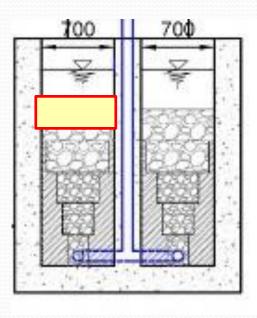
Gravel-bed Flocculator

Design Flow, Q $= 240 \text{ m}^{3}/\text{d}$ Using 2 units duty, = 240/2 = 120 m³ /d Q of each = $15 \text{ m}^3/\text{h}$ (Pumping Hour = 8 hr) $= 0.0042 \text{ m}^{3/\text{s}}$ Total volume of flocculator = 0.21 + 0.18 + 0.12 + 0.09 + 0.06 $= 0.66 \text{ m}^3$ $=\frac{V}{Q}$ Nominal flocculation time, t $=\frac{0.66}{0.0042}$ $= 157 \text{ s} = 2.6 \min (3 \sim 5 \min)$

Slow-mix for Gravel-bed flocculator

Section I

Area $= 1m \times 0.7m$ $= 0.7 m^2$ Face velocity, v= Q/A = 0.0042/0.7 = 0.00595 m/s


Continued Gravel-bed Flocculator

Reynolds Number, Rn	$= dv\rho/\mu$
	$=\frac{(0.015\times0.00595\times998)}{_{1.01\times10^{-3}}}=88$
Friction Factor, f	$= 150 \left(\frac{(1-\alpha)}{Rn} \right) + 1.75$
	$= 150 \left(\frac{(1-0.4)}{88}\right) + 1.75$
	= 2.77
Head loss, h	$= \frac{f}{\theta} \left(\frac{(1-\alpha)}{\alpha^3} \right) \frac{L}{d} \times \frac{\nu^2 L}{g}$
	$=\frac{2.77}{0.8}\times\left(\frac{(1-0.4)}{0.4^3}\right)\times\frac{0.3}{0.015}\times\frac{0.00595^2}{9.81}$
	= 0.0024 m
Volume of Section (I)	= 0.21 m3
Velocity Gradient, G	$= \left(\frac{h\rho g Q}{\mu \alpha V}\right) \frac{1/2}{}$
	$= \left(\frac{0.0024 \times 998 \times 9.81 \times 0.0042}{1.01 \times 10^{-3} \times 0.4 \times 0.21}\right)^{1/2}$
	$= 34 \text{ s}^{-1}$

Continued Gravel-bed Flocculator

Summary

Section-1	h = 0.0023 m	$G = 34 s^{-1}$
Section-2	h = 0.003 m	$G = 41 \ s^{-1}$
Section-3	h = 0.015 m	$G = 113 \ s^{-1}$
Section-4	h = 0.024 m	$G = 165 \ s^{-1}$
Section-5	h = 0.048 m	$G = 285 \ s^{-1}$

Length	Width	Height
(m)	(m)	(m)
1.0	0.70	0.3
1.0	0.60	0.3
1.0	0.40	0.3
1.0	0.30	0.3
1.0	0.20	0.3

Ref: Water Treatment Processes

f	θ	a	L	d	v	g	f/Ə	$\left(\frac{1-\alpha}{\alpha^3}\right)$	L/d	v^2/g	h
	m3/min		(m)	(m)	(m/s)	(m/sq.s)				-	(m)
2.77	0.8	0.4	0.3	0.015	0.0059524	9.8	3.4626503	9.375	20	0.00000362	0.002347
2.62	0.8	0.4	0.3	0.015	0.0069444	9.8	3.28048597	9.375	20	0.00000492	0.003027
2.92	0.8	0.4	0.3	0.0075	0.0104167	9.8	3.64481463	9.375	40	0.00001107	0.015133
2.62	0.8	0.4	0.3	0.0075	0.0138889	9.8	3.28048597	9.375	40	0.00001968	0.024215
2.33	0.8	0.4	0.3	0.0075	0.0208333	9.8	2.91615731	9.375	40	0.00004429	0.048432

Gravel-Bed Flocculator Design Calculation (5000 Capita)

Gravel size, d		Velocity, v	ρ	μ	dvp	Rn
(in)	(m)	(m/s)	(kg/cu.m)	(kg/m.s)		
0.59058	0.015	0.00595	998	0.00101	0.0891071	88
0.59058	0.015	0.00694	998	0.00101	0.1039583	103
0.29529	0.0075	0.01042	998	0.00101	0.0779688	77
0.29529	0.0075	0.01389	998	0.00101	0.1039583	103
0.29529	0.0075	0.02083	998	0.00101	0.1559375	154

Length	Width	Height	Area	Volume	Flow, Q	Velocity, v
(m)	(m)	(m)	(sq.m)	(cu.m)	(eu.m/s)	(m/s)
1.0	0.70	0.3	0.70	0.21	0.0042	0.00595
1.0	0.60	0.3	0.60	0.18	0.0042	0.00694
1.0	0.40	0.3	0.40	0.12	0.0042	0.01042
1.0	0.30	0.3	0.30	0.09	0.0042	0.01389
1.0	0.20	0.3	0.20	0.06	0.0042	0.02083
		<u> </u>	Total	0.66		•

a	Rn	$\frac{1-a}{Rn}$	f
0.4	88.2	0.006800802	2.77
0.4	102.9	0.005829259	2.62
0.4	77.2	0.007772345	2.92
0.4	102.9	0.005829259	2.62
0.4	154.4	0.003886172	2.33

Nominal Flocculation Time	Unit	
158	sec	
2.6	min	(3~5 min)

Capital	Design Flow (cum/d)	Pumping hour (hour/day)
5000	240	8
	120	(Using 2 units)

h	ρ	g	Q	μ	α	v	hợgQ	μαν	$h \rho g Q / \mu \alpha V$	$G = (hrgQ/\mu\alpha V)^{\frac{1}{2}}$	
(m)	(kg/cu.m)	(m/sq.s)	(cu.m/s)	(kg/m.s)		(cu.m)				(<i>sec</i> ⁻¹)	
0.002347	998	9.8	0.0042	0.00101	0.4	0.21	0.09565565	0.00008484	1127	34	35~40
0.003027	998	9.8	0.0042	0.00101	0.4	0.18	0.12334847	0.00007272	1696	41	35~40
0.015133	998	9.8	0.0042	0.00101	0.4	0.12	0.61671363	0.00004848	12721	113	130~1230
0.024215	998	9.8	0.0042	0.00101	0.4	0.09	0.98678777	0.00003636	27139	165	130~1230
0.048432	998	9.8	0.0042	0.00101	0.4	0.06	1.97369046	0.00002424	81423	285	130~1230

Can be calculated as follow;

Length	Width	Height (m)		
(m)	(m)			
1.0	0.70	0.3		
1.0	0.60	0.3		
1.0	0.40	0.3		
1.0	0.30	0.3		
1.0	0.20	0.3		

Area	Volume	Flow, Q	Velocity, v
(sq.m)	(cu.m)	(cu.m/s)	(m/s)
0.70	0.21	0.0042	0.00595
0.60	0.18	0.0042	0.00694
0.40	0.12	0.0042	0.01042
0.30	0.09	0.0042	0.01389
0.20	0.06	0.0042	0.02083
Total	0.66		

Nominal Flocculation Time	Unit	
158	sec	
2.6	min	(3~5 min)

Capital	Design Flow (cum/d)	Pumping hour (hour/day)
5000	240	8
	120	(Using 2 units)

Gravel size, d		Velocity, v	ρ	μ	dvr	Rn	
(in) (m) (m/s		(m/s)	(kg/cu.m)	(kg/m.s)			
0.59058	0.015	0.00595	998	0.00101	0.0891071	88	
0.59058	0.015	0.00694	998	0.00101	0.1039583	103	
0.29529	0.0075	0.01042	998	0.00101	0.0779688	77	
0.29529	0.0075	0.01389	998	0.00101	0.1039583	103	
0.29529	0.0075	0.02083	998	0.00101	0.1559375	154	

α	Rn	$\frac{1-a}{Rn}$	f
0.4	88.2	0.006800802	2.77
0.4	102.9	0.005829259	2.62
0.4	77.2	0.007772345	2.92
0.4	102.9	0.005829259	2.62
0.4	154.4	0.003886172	2.33

f	θ	α	L	d	v	g	f/q	$\left(\frac{1-\alpha}{\alpha^3}\right)$	L/d	v^2/g	h
	m3/min		(m)	(m)	(m/s)	(m/sq.s)					(m)
2.77	0.8	0.4	0.3	0.015	0.0059524	9.8	3.4626503	9.375	20	0.00000362	0.002347
2.62	0.8	0.4	0.3	0.015	0.0069444	9.8	3.28048597	9.375	20	0.00000492	0.003027
2.92	0.8	0.4	0.3	0.0075	0.0104167	9.8	3.64481463	9.375	40	0.00001107	0.015133
2.62	0.8	0.4	0.3	0.0075	0.0138889	9.8	3.28048597	9.375	40	0.00001968	0.024215
2.33	0.8	0.4	0.3	0.0075	0.0208333	9.8	2.91615731	9.375	40	0.00004429	0.048432


h	ρ	g	Q	μ	α	V	hrgQ	maV	hrgQ/maV	$G = (hrgQ/\mu\alpha V)^{\frac{1}{2}}$
(m)	(kg/cu.m)	(m/sq.s)	(cu.m/s)	(kg/m.s)		(cu.m)				(sec ⁻¹)
0.002347	998	9.8	0.0042	0.00101	0.4	0.21	0.09565565	0.00008484	1127	34
0.003027	998	9.8	0.0042	0.00101	0.4	0.18	0.12334847	0.00007272	1696	41
0.015133	998	9.8	0.0042	0.00101	0.4	0.12	0.61671363	0.00004848	12721	113
0.024215	998	9.8	0.0042	0.00101	0.4	0.09	0.98678777	0.00003636	27139	165
0.048432	998	9.8	0.0042	0.00101	0.4	0.06	1.97369046	0.00002424	81423	285

Plate Settler

Flow, Q $= 30 \text{ m}^{3}/\text{h}$ Detention time $= 30 \min$ $=\frac{(30\times30)}{60}=15\ \mathrm{m}^3$ Tank Volume Assume liquid depth = 2 mSurface area of tank $= 15/2 = 7.5 \text{ m}^2$ For Plates Design $= 30 \text{ m}^{3}/\text{h}$ Total flow rate Surface loading $= 1 \text{ m/h} (0.7 \sim 2 \text{ m/h})$ $=30/1 = 30 \text{ m}^2$ Required area of plate Size of plate $= 1.2 \text{ m} \times 1.2 \text{ m} (0.8 \text{ mm thick})$ Angle of inclination $= 55^{\circ}$ Projection area of plate $= 1.2 \times 1.2 \cos 55^{\circ} \times 0.9 = 0.74 \text{ m}^2$ (Considering 90% efficiency) No: of plate required = 30/0.74 = 40 Nos

Continued Plate Settler

Using 2 units duty,	
Nos of plates of each	=40/2=20 Nos
Assume gap between plate	= 61 mm
Length of clarifier	$= (19 \times 0.061) + (20 \times 0.008) + 1.2 \cos 55^{\circ}$
	= 2.00 m
Total length of settler	= 0.25 m + 2.00 m + 0.25 m
	= 2.5 m
Width of settler	$= 1.2 \text{ m} \times 2 = 2.4 \text{ m}$
Surface Area provided	= 2.5 m × 2.4 m = 6.0 m ² < 7.5 m ² (Required Area)
Actual overall basin loading	= 30/6.0 = 5.0 m/h (5~15 m/h) (OK)

Ref: Water Supply, Waste Disposal and Environmental Engineering By A.K. Chatterjee

Rapid Sand Filter

(a) Design Water Treatment Capacity required,

Q = Domestic + 3% For back washing $= 30 \text{ m}^{3}/\text{h} + 0.9 \text{ m}^{3}/\text{h}$ $= 30.9 \text{ m}^{3}/\text{h}$ (b) Using (2) Units For each (1) unit = 30.9/2 = $15.45 \text{ m}^3/\text{h}$ $= 15.45 \text{ m}^{3}/\text{h}$ (c) Filtration Rate = 6 m/hRequired Area for Filter Unit = $(15.45 \text{ m}^3/\text{h})/(6 \text{ m/h})$ $= 2.575 \text{ m}^2$ Assume, (L/B) Ratio = 1:1 Length $=\sqrt{2.575}$ L = B = 1.6 m

(d) Under Drain Design System

Total area of perforation	= 0.2 % of total filter area
	$= 0.2/100 \times (1.6 \text{m x } 1.6 \text{m})$
	$= 0.00512 \text{ m}^2$
	(Note: 13 mm Ø Dia perforation)

(e) The area of manifold would be (4) times the total area of perforation

Manifold Area	$= 4 \times 0.00512 \text{ m}^2$
	$= 0.02048m^2$
Diameter Of Manifold Pipe, A	$a = \pi d^2/4$
$\pi d^2/4$	= 0.02048
d²	$=(0.02048 \times 4)/\pi$
	= 0.026076
d	$=\sqrt{0.026076}$
	$= 0.161 \text{ m} \emptyset = 150 \text{ mm} \emptyset$
Say, d	= 150 mm Ø

(f) Laterals may be assumed to h	ave a spacir	ng of 20 cm (Maximum 30 c	cm)
Therefore, Total no of Lateral	S	$= (1.6m \times 100cm)/20cm$	= 8 Nos
Therefore, Both Side of Mani	fold	$= 8 \text{ Nos} \times 2$	
		= 16 Nos	
(g) Length of a Lateral,	$= 1/2 \times wic$	dth of filter - $1/2 \times \text{dia of } n$	nanifold
	= (1.6m x	100cm)/2 - (15cm)/2	
	= 80 cm -	7.5 cm	
	= 72.5 cm		
	= 0.725 m		
(h) Let 'N' be the total no of perf	foration of 1	3 mm dia,	
Total area of perforation	= 0.00512	m²	
	$= 51.2 \text{ cm}^2$		
$ m N imes\pi d^2/4$	$= 51.2 \text{ cm}^2$	2	
Ν	= (51.2 x 4	$+)/\pi d^2$	
	= 39 Nos		

- (i) Area of perforation
 - 13 mm Dia , Area $= \pi d^2/4$ = (3.14 x (1.3)²)/4 = 1.3266 cm² Say, = 1.33 cm²

(j) No of perforation per lateral,

(total no of perforation)/(total no of laterals)= (39 Nos)/(16 Nos)

= 2.43 Nos = 3 Nos

(k) Area of perforation per lateral,

 $= 2.5 \text{ Nos } x 1.33 \text{ cm}^2$ = 3.325 cm²

(1) Area of lateral = 3 x area of perforation per lateral = $3 \text{ x} 3.325 \text{ cm}^2$ = 9.975 cm^2

Dia of Lateral,

$\pi d^2/4$	$= 9.975 \text{ cm}^2$
d ²	$= (9.975 \text{ x } 4)/\pi = 12.70$
d	$=\sqrt{12.7}$ = 3.56 cm
d	= 35.6 mm Ø
Use, d	$=40 \text{ mm } \emptyset$, (4 cm)

Check,

(Length of lateral)/(Dia of lateral)	= (72.5 cm)/(4 cm)				
	= 18.125 (18.125 < 60) (ok)				
Assume rate of washing	= 45 cm/min				
	= 0.45 m/min = 27 m/hr				

Therefore, Volume of w/water discharge in,

$$Q = AV$$

= (1.6 x 1.6)m² x 27 min /hr
= 69.12 m³/hr =1.152 m³/min
= 0.0192 m³/s

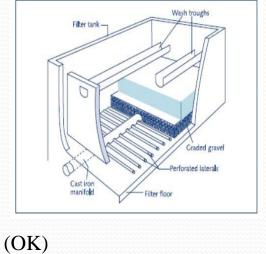
Therefore,

Velocity of lateral, v	= Q/A
	$= (0.0192 \text{ m}^{3/s})/(16 \text{ x} \pi d^{2/4})$
	= $(0.0192 \text{ m}^3/\text{s})/(16 \text{ x} \pi/4 \text{ x} (40/1000)^2)$
	$= (0.0192 \text{ m}^{3/s})/(0.020096)$
	= 0.955 m/s
Velocity of flow in manifold, v	= (Q)/A
	$= (0.0192 \text{ m}^{3}/\text{s})/0.02048 \text{m}^{2}$
	= 0.9375 m/s

This velocity of flow in manifold is less than $(1.8 \sim 2.4 \text{ m/s})$ (maximum permissible)

Wash water trough

Trough are generally not more than 1.8m apart.

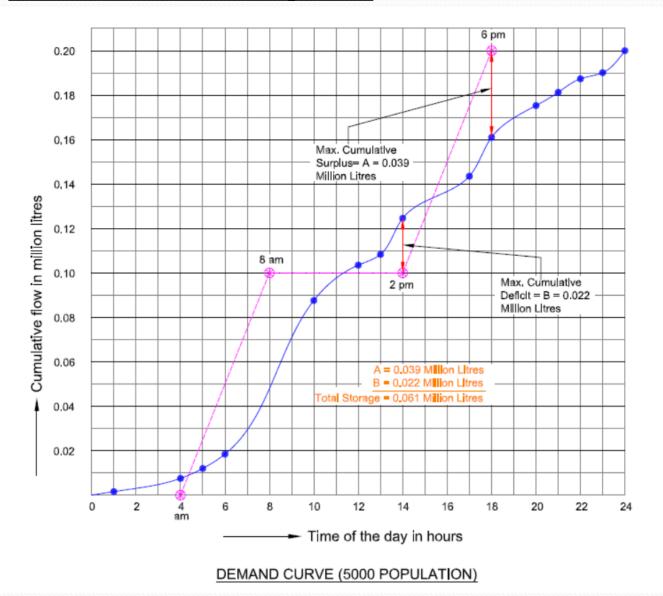

Therefore, No of troughs	= (1.6 m)/1.8 m
	= 0.88 Nos, Say = 1 No
Discharge per trough	$= (0.0192 \text{ m}^3/\text{s})/(1 \text{ No})$
	$= 0.0192 \text{ m}^{3/\text{s}}$

For a flat bottom trough, Q	$= 0.76$ b y $^{3/2}$
b	= width of trough in (m)
У	= depth of water at the upper end of trough in (m)
Let b	= 0.4 m (width of trough)
Q	= 0.76 b y 3/2
y ^{3/2}	$= (Q)/0.76 \times b = (0.0192 \text{ m}^3/\text{s})/(0.76 \times 0.4)$
y ^{3/2}	= 0.0192/0.304
у	= 0.158 m (Say 0.16 m)

In case cleaning one unit,

When 1 unit is in cleaning process and only 1 unit is in operation,

Total flow, Q	$= 30 \text{ m}^{3}/\text{h}$
Area of each filter	$= 1.6 \times 1.6 = 2.56 \text{ m}^2$
Total area	$= 2 \times 2.56 = 5.12 \text{ m}^2$
Actual filtration rate	$= (30 \text{ m}^3/\text{h})/(5.12 \text{ m}^2)$
	$= 5.85 \text{ m/h} (5 \sim 7.5 \text{ m/h})$


Ref : Elements of Public Health Engineering

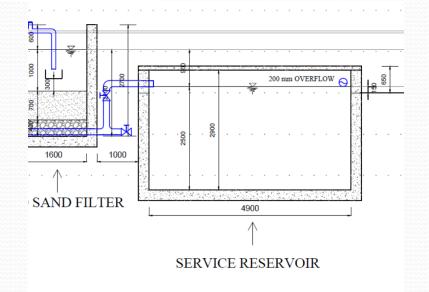
> <u>Storage Reservoir</u>

	Give	n Data				8 Hou	irs P	umping R	late
Period in Hours	Hourly Demand		Cumulative Demand		Cumulative Pumping		Cumulative deficit or surplus		
(1)	(2)	(3)		(4) = Σ ((3)	(5)		(6) = (5) - (4)
04-05	1	0.55	a	0.55	a	3.00	а	2.46	a
05-06	1	0.80	а	1.35	а	6.00	а	4.66	а
06-10	4	2.16	а	9.99	а	12.00	а	2.02	а
10-12	2	1.00	а	11.99	а	12.00	а	0.01	а
12-13	1	0.60	а	12.59	а	12.00	а	-0.59	а
13-14	1	2.16	a	14.75	а	12.00	а	-2.75	а
14-17	3	0.75	a	17.00	a	21.00	а	4.01	a
17-18	1	2.16	а	19.16	а	24.00	а	4.85	а
18-20	2	0.90	а	20.96	а	24.00	а	3.05	а
20-21	1	0.75	а	21.71	а	24.00	а	2.30	а
21-22	1	0.75	а	22.46	а	24.00	а	1.55	а
22-23	1	0.40	а	22.86	а	24.00	а	1.15	а
23-01	2	0.20	a	23.26	a	24.00	а	0.75	а
01-04	3	0.25	a	24.00	а	24.00	а	0.00	a

Calculation Table for Average Hourly Demand

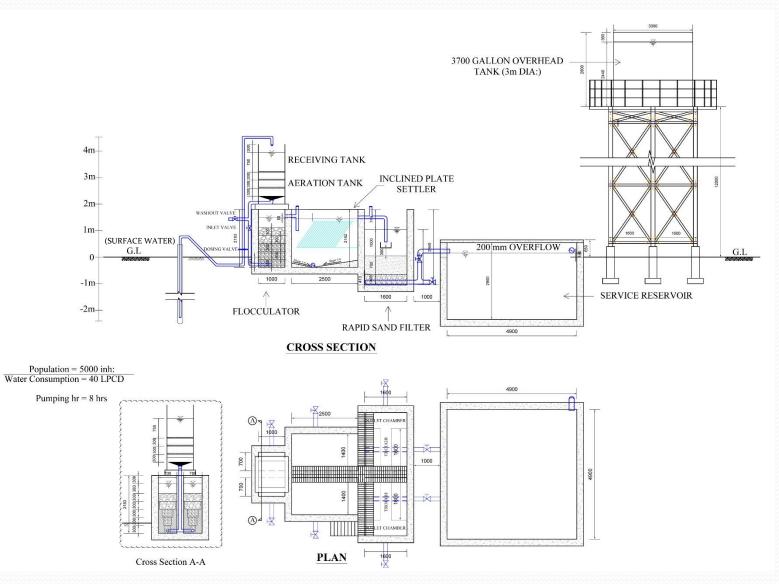
Demand Curve for 5000 Population

SOLUTION (FOR 5000 POPULATION):

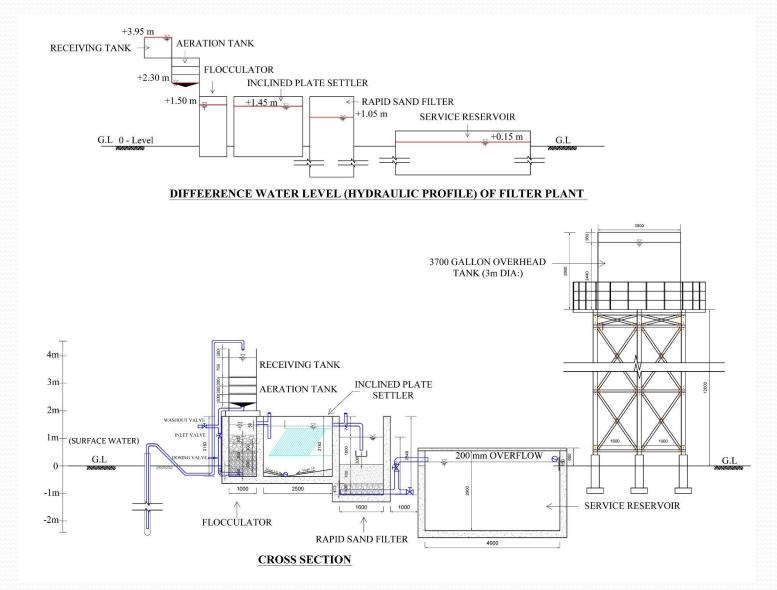

- Total Demand = 5000 x 40 lpd = 200000 lpd = 0.20 mld
- Average Hourly Demand = 0.20/24 = 0.008 ml = a
- Peak Hourly Demand = 2.16 x Average Hourly Demand = 2.16 a

CAPACITY OF SERVICE RESERVOIR (5000 PE)

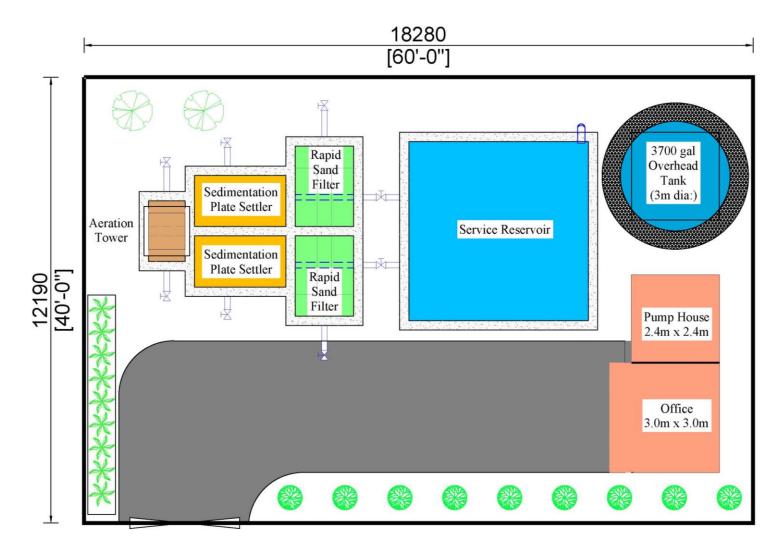
Pumping hours	Maximum Cumulative surplus	Maximum Cumulative deficit	Capacity of Storage Reservoir	Capacity of Storage Reservoir in ml (a=0.008 ml)
8	4.85a	2.75a	7.6a	0.061


> Calculation for Size of Service Reservoir

$= 61 \text{ m}^3$		
ft ³		
3		
ft ²		
4		
t (Say 16 ft)		
= 16 ft × 16 ft × 8 ft (Free board 1.5 ft)		



Ref: Compilation of Water Supply and Treatment


WATER TREATMENT PLANT PLAN & SECTION

WATER TREATMENT PLANT PLAN & SECTION

LAYOUT PLAN OF TREATMENT PLANT (DRAFT)

REFERENCE BOOKS

- 1) Water Supply Engineering Santosh Kumar Garg
- 2) Water Treatment Process S. Vigneswaran, C. Visvanathan
- **3)** Small Community Water Supplies IRC Technical Paper Series 40
- 4) Element of Public Health Engineering K.N Duggal
- 5) Drinking Water (Principle and Practice) P.J de Moel, J.Q.J.C Verberk, J.C Van Dijk
- 6) **Compilation of Water Supply and Treatment** *Akalank's Publications (India)*
- 7) Surface Water Treatment for Communities in Development Counties Christopher R.Schulz and Daniel A.Okun

THANK YOU FOR YOUR TIME & INTEREST