SHORT CIRCUIT CURRENT CALCULATION BY OHMIC VALUE METHOD

Presented By U Win Myint B.E (EP) 1977 National Counterpart (049) Professional Engineer {Registration No. (0125)} ASEAN Chartered Professional Engineer (Electrical)

DATE - --/--/2024

COURSE OUTLINES

- **1.** Sources of Fault Current
- 2. Short Circuit
- **3.** Effect of Short Circuit
- 4. Protection Against Short Circuit
- 5. Interrupting Capacity of Protective Device
- 6. Prospective Short Circuit Current
- 7. Ohmic Value Method
- 8. Main Objective of Fault Calculation
- 9. Ohmic Value of Cable Impedance
- **10.**Adjustment of Operating Temperature of Cable Resistance
- **11.**Value k for Calculation of the Effect of Fault Current
- **12.**Time Current Characteristic of MCB/MCCB/ACB
- **13.**Example (I); (II); (III); (IV)

1. SOURCES OF FAULT CURRENTS

The basic sources of fault currents are the utility supply system, local generators, synchronous motors and induction motors. All the running generators in the utility system contribute to the fault current in a low-voltage system. However, transmission and distribution lines and transformers introduce impedances between the utility generators and the low voltage system. As a result, the contribution of these generators to the fault current in the lowvoltage system is substantially reduced. Nevertheless, the utility system is still the main source of the fault currents. The amount of the short-circuit current from the utility system is normally expressed as the fault level should normally be obtained from the utility. Typical values of fault level at 22 kV are in the range of 300 MVA to 1000 MVA and for 6.6 kV, in the range of 150 MVA to 200 MVA.

2. SHORT CIRCUIT

Short-circuit faults in an electrical installation can arise as a result of:

- a) Failure of insulation within equipment or distribution feeders.
- b) Wrong connection of terminations.
- C) Negligence.

3. EFFECTS OF SHORT CIRCUIT CURRENT

When a short-circuit occurs, a very high fault current flows from the source of supply to the fault point; the two effects of this high short-circuit are:

- a) Dissipation of a tremendous amount of heat energy (thermal energy) in the complete distribution system.
 Thermal energy = (I²R) x Duration of the fault
- b) Setting up of a very high oscillating mechanical force (proportional to I²) between two conductors, which may cause serve mechanical damage to the installation.

4. PROTECTION AGAINST SHORT CIRCUIT

Short-circuit protective devices are circuit breakers or fuses at all voltage levels.

The circuit breakers or fuses selected must be capable of interrupting the fault current at the rated voltages that may flow under any of the following short-circuit conditions:

- a) Three Phase Fault
- b) Line to Neutral Fault
- C) Line to Line Fault

5. INTERRUPTING CAPACITY OF PROTECTIVE DEVICE

When subjected to a short-circuit, protective devices having inadequate interrupting capacity may explode resulting in injury to personnel and causing serious damage to the installation.

The short-circuit rating of a protective device is the maximum fault current that the device can interrupt safely and must therefore not be less than the calculated short-circuit current at the point of installation.

6. PROSPECTIVE SHORT CIRCUIT CURRENT

The configuration in its simplest forms is as shown in Figure 1.

Figure 1 Total system impedance which limits the short circuit current

The 'prospective' level of fault current at the point of installation is the r.m.s. symmetrical current that would flow in a circuit due to the nominal applied voltage when a short-circuiting occurs at that point.

Total System Impedance $Z_T = \sqrt{R_T^2 + X_T^2}$

Therefore, r.m.s. value of a 3-phase symmetrical short-circuit current

 $I_{\rm r} = \frac{\text{Line Voltage}}{\sqrt{3} \text{ x } Z_{\rm T}}$

7. OHMIC VALUE METHOD

The above calculation makes use of the ohmic value of impedance of the power source, transformer, bus duct and cables for the fault current calculation and it is therefore known as ohmic value method.

Ohmic value method for fault current is effective for simple system with one voltage level only (i.e. 400V 3-phase or 230V single phase system).

8. MAIN OBJECTIVE OF FAULT CALCULATIONS

- a) To determine maximum 3-phase short-circuit currents for the selection of suitable circuit breakers with the necessary interrupting capacities.
- b) To determine the time co-ordination of protective relays with the knowledge of the fault currents that must be protected.
- C) To ensure that busbars are adequately braced against the shortcircuit forces produced by the high fault currents. Short-circuit forces are proportional to the square of the fault current.
- d) To select cables with ability to withstand short-circuit heating for the time required to clear circuit by the circuit breakers or fuses.

9. OHMIC VALUE OF CABLE IMPEDANCE

To calculate the fault current by ohmic value method, the ohmic value of cable resistance and reactance can be obtained from the voltage drop section of tables in the code of practice for electrical installations.

An example of this drop table is shown in Table 1 for PVC insulated single core cable and Table 2 for XLPE insulated single core cable. The phase conductor's resistance R and reactance X for each meter run of the phase conductor can be calculated from the tabulated mV/A/m values of the tables. For example, actual resistance of conductor at maximum operating temperature (70°C for PVC insulation and 90°C for XLPE insulation) can be calculated by:-

 $R_{P} = \frac{1}{2}(mV/A/m)_{r} \& X_{P} = \frac{1}{2}(mV/A/m)_{x}$

and

 $R_{P} = (mV/A/m)_{r}/\sqrt{3} \& X_{P} = (mV/A/m)_{x}/\sqrt{3}$

If the value of MV/A/m and taken from the 3-phase columns.

VOLT	AGE DR	OP (per	ampere	per metr	e):					TA	BLE 40	18			-		с	onducto	r operati	ng tempe	rature:	70 ℃
	1				2 cables,	single-ph	ase a.c.								3 or 4 c	ables, thre	e-phase a	.c.				
Con- ductor cross- sec- tional area	2 cables d.c.	M	Reference tethods 3 (enclosed onduit etco or on a wa	e & 4 in :. in all)	F Met (cli o t	Reference hods 1 & ipped dire r on trays, touching)	11 ct	Reference Method 12 (spaced*)		Reference Method 12 (spaced*)		teference thods 3 & nclosed in iduit etc. i on a wall	4 m)	Re Method (in	ference is 1, 11 & trefoil)	12	Reference Methods 1 & 11 (flat and touching)			Reference Method 12 (flat spaced*)		
1	2		3			4	12	5				б			7			8			9	
(mm ²)	(mV/ A/m)		(mV/A/n	n)	((mV/A/m) (mV/		nV/A/m]		(mV/A/m)			(mV/A/m)			(mV/A/m)			(mV/A/m)			
1	44		44		See 18	44	20.		44		1	38		38			38			38		
1.5	29	F-	29			29	Sec.		29			25	- I	25			25			25		
2.5	18	1	18	•	THE SECOND	18			18		1.	15			15	1		15			15	
4	11 .	125	11			Н	a set ba		11		9.5 9.5			9.5				9.5				
6	7.3	19EX	7.3			7.3		7.3			6.4			6.4	- 1		6.4			6.4		
16	2.8	1 - J.	2.8		1.5	4.4	in the		4.4		- Domes	3.8			3.8			3.8			3.8	
	1							10000				2.4			4.4			6.4			<i>4</i> ,4 ,	
-		r	X	Z	r	x	Z	r	x	Z	r	x	z	r	x	Z	r	x /	z	r	x	z
15	1.75	1.80	0.33	1.80	1.75	0.20	1.75	1.75	0.29	1.80	1.50	0.29	1.55	1.50	0.175	1.50	1.50	0.25	1.55	1.50	0.32	1.55
50	0.03	0.05	0.30	1.00	1.25	0.195	1.25	1.25	0.28	1.30	1.10	0.27	1.10	1.10	0.170	1.10	1.10	0.24	1.10	1.10	0.32	1.15
70	0.63	0.65	0.29	0.72	0.93	0.190	0.95	0.95	0.28	0.69	0.81	0.20	0.85	0.80	0.165	0.82	0.80	0.24	0.84	0.80	0.32	0.86
95	0.46	0.49	0.28	0.56	0.47	0.180	0.50	0.47	0.27	0.54	0.42	0.24	0.48	0.33	0.155	0.43	0.33	0.24	0.60	0.35	0.31	0.63
120	0.36	0.39	0.27	0.47	0.37	0.175	0.41	0.37	0.26	0.45	0.33	0.23	0.41	1 0 32	0.150	0.36	0 32	0.22	0.40	1 0 22	0.20	0.44
150	0.29	0.31	0.27	0.41	0.30	0.175	0.34	0.29	0,26	0.39	0.27	0,23	0.36	0.26	0.150	0.30	0.26	0.23	0.34	0.26	0.30	0.44
185	0.23	0.25	0.27	0.37	0.24	0.170	0.29	0.24	0.26	0.35	0.22	0.23	0.32	0.21	0.145	0.26	0.21	0.22	0.31	0.21	0.30	0.36
240	0.180	0.195	0.26	0.33	0.185	0.165	0.25	0.185	0.25	0.31	0.17	0.23	0.29	0.160	0.145	0.22	0.160	0.22	0.27	0.160	0.29	0.34
300	0.145	0.160	0.26	0.31	0.150	0.165	0.22	0.150	0.25	0.29	0.14	0.23	0.27	0.130	0.140	0.190	0.130	0.22	0.25	0.130	0.29	0.32
400	0.105	0.130	0.26	0.29	0.120	0.160	0.20	0.115	0.25	0.27	0.12	0.22	0.25	0.105	0.140	0.175	0.105	0.21	0.24	0.100	0.29	0.31
500	0.086	0.110	0.26	0.28	0.098	0.155	0.185	0.093	0.24	0.26	0.10	0.22	0.25	0.086	0.135	0.160	0.086	0.21	0.23	0.081	0.29	0.30
0.30	0.068	0.094	0.25	0.27	0.081	0.155	0.1/5	0.076	0.24	0.25	0.08	0.22	0.24	0.072	0.135	0.150	0.072	0:21	0.22	0.066	0.28	0.29
1000	0.055				0.000	0.150	0.103	0.001	0.24	0.25	1000			0.060	0.130	0.145	0.060	0.21	0.22	0.053	0.28	0.29
1000	0.042	-			0.059	0.150	0.100	0.050	0.24	0.44	1		-	0.052	0.130	0.140	0.052	0.20	0.21	0.044	0.28	0.28

Table 1 Voltage drop section of single core PVC cable which mV/A/m as phase to neutral voltage drop for single phase system and line to line voltage drop for 3-phase system

TABLE 4E1B

VOLTAGE DROP (per ampere per meter)

Conduct operating temperature 90°C

		2 cables, single-phase a.c.									3 or 4 cables, three-phase a.c.											
Conduct or cross- sectional area	2 cables d.c.	F Me (enclose in c	Reference thods 3 & d in con or on a w	e & 4 duit etc. /all	I Met (clipp tray	Reference hods 1 & ed direct rs, touchi	e 2 11 or on ng)	R M (Reference Method 12 (spaced*) (6		F Met (enclose in o	Reference Methods 3 & 4 (enclosed in conduit etc. in or on a wall)		I Metho (Reference ods 1, 11 in trefoil	e & 12)	Reference Methods 1 & 11 (flat, touching)		e z 11 ng)	Reference Method 12 (flat spaced*)		e flat
1	2		3			4 5			6				7			8		9				
(mm)	(mV/A/ m)	()	mV/A/m	ı)	((mV/A/m)		(mV/A/m)		(mV/A/m)		(mV/A/m)		(mV/A/m)		(mV/A/m))				
1	46		46			46			46			40			40			40			40	
1.5	31		31			31			31		27			27			27				27	
2.5	19		19			19			19			16			16		16			16		
4	12		12			12			12			10			10			10		10		
6	7.9		7.9			7.9			7.9		6.8			6.8		6.8			6.8			
10	4.7		4.7			4.7			4.7			4			4			4			4	
16	2.9		2.9			2.9			2.9			2.5			2.5			2.5			2.5	
		r	x	z	r	х	z	ſ	x	z	r	x	z	r	x	z	r	x	z	ſ	x	z
25	1.85	1.85	0.31	1.90	1.85	0.190	1.85	1.85	0.28	1.85	1.60	0.27	1.65	1.60	0.165	1.50	1.60	0.19	1.60	1.60	0.27	1.65
35	1.35	1.35	0.29	1.35	1.35	0.180	1.35	1.35	0.27	1.35	1.15	0.25	1.15	1.15	0.155	1.15	1.15	0.18	1.15	1.15	0.26	1.20
50	0.99	1.00	0.29	1.05	0.99	0.180	1.00	0.99	0.27	1.00	0.87	0.25	0.90	0.80	0.155	0.87	0.80	0.18	0.87	0.80	0.26	0.89
70	0.08	0.70	0.28	0.75	0.08	0.175	0.75	0.08	0.20	0.75	0.00	0.24	0.05	0.59	0.150	0.01	0.59	0.18	0.02	0.59	0.25	0.05
95	0.49	0.51	0.27	0.56	0.49	0.170	0.52	0.49	0.20	0.50	0.44	0.23	0.50	0.45	0.145	0.45	0.45	0.17	0.40	0.45	0.25	0.49
120	0.39	0.41	0.26	0.48	0.39	0.165	0.43	0.39	0.25	0.47	0.35	0.23	0.42	0.34	0.140	0.37	0.34	0.165	0.38	0.34	0.24	0.42
150	0.32	0.33	0.26	0.43	0.32	0.165	0.36	0.32	0.25	0.41	0.29	0.23	0.37	0.28	0.140	0.31	0.28	0.165	0.32	0.28	0.24	0.37
185	0.25	0.27	0.26	0.37	0.26	0.165	0.30	0.25	0.25	0.36	0.23	0.23	0.32	0.22	0.140	0.26	0.22	0.165	0.28	0.22	0.24	0.33
240	0.190	0.21	0.26	0.33	0.20	0.160	0.25	0.20	0.25	0.31	0.19	0.22	0.29	0.170	0.140	0.22	0.170	0.165	0.24	0.170	0.24	0.29
300	0.155	0.175	0.25	0.31	0.160	0.160	0.22	0.155	0.25	0.29	0.150	0.22	0.27	0.140	0.140	0.195	0.135	0.160	0.21	0.135	0.24	0.27
400	0.120	0.140	0.25	0.29	0.130	0.155	0.20	0.125	0.24	0.27	0.125	0.22	0.25	0.110	0.135	0.175	0.110	0.160	0.195	0.110	0.24	0.26
500	0.093	0.120	0.25	0.28	0.105	0.155	0.185	0.098	0.24	0.26	0.100	0.22	0.24	0.090	0.135	0.160	0.088	0.160	0.180	0.085	0.24	0.25
630	0.072	0.100	0.25	0.27	0.086	0.155	0.175	0.078	0.24	0.25	0.088	0.21	0.23	0.074	0.135	0.150	0.071	0.160	0.17	0.068	0.23	0.24
800	0.056		-		0.072	0.150	0.170	0.06	0.24	0.25		-		0.062	0.130	0.145	0.059	0.155	0.165	0.055	0.23	0.24
1000	0.045		-		0.063	0.150	0.165	0.054	0.24	0.24		-		0.055	0.130	0.140	0.050	0.155	0.165	0.047	0.23	0.24

NOTE * Spacing larger than those specified in Method 12 (see table table 4A) will result in larger voltage drop

Table 2 Voltage drop section of single core XLPE cable which mV/A/m as phase to neutral voltage drop for single phase system and line to line voltage drop for 3-phase system

10. ADJUSTMENT OF OPERATING TEMPERATURE FOR CABLE RESISTANCE

As the $(mV/A/m)_r$ value of cables obtained from voltage section of tables in the code of practice for electrical installations are tabulated for maximum normal operating temperature for respective insulation type (i.e. 70°C for PVC and 90°C for XLPE), the actual resistive value of the phase conductor impedance must be adjusted by temperature because the temperature of the phase cable under short circuit condition may be higher and this will affect the resistive value as shown in Figure 2.

Figure 2 Resistance Value at Various Temperature

For assumed temperature t_g °C under short circuit condition, maximum normal operating temperature t_p °C may be adjusted by the formula:-

R/meter = (tabulated mV/A/m)_r at $t_p C \times (\frac{230+t_g}{230+t_p})$

Example 1: (a)For PVC insulated copper single core cable, $t_p = 70^{\circ}C$ $t_{max} = critical temperature for PVC = 160^{\circ}C$

Average conductor temperature during fault condition is normally obtained by

$$t_{g} = \frac{(t_{p} + t_{max})}{2} = \frac{(70^{\circ}C + 160^{\circ}C)}{2} = 115^{\circ}C$$

$$\therefore R_{115^{\circ}C} = R_{70^{\circ}C} \times \left(\frac{230 + 115}{230 + 70}\right) = 1.15 R_{70^{\circ}C}$$

15% increase.

(b)For XLPE insulated copper single core cable, t_p = 90°C t_{max} = critical temperature for PVC = 250°C

Average conductor temperature during fault condition is normally obtained by

$$t_{g} = \frac{(t_{p} + t_{max})}{2} = \frac{(90^{\circ}C + 250^{\circ}C)}{2} = 170^{\circ}C$$

∴ R_{170°C} = R_{90°C} x ($\frac{230 + 170}{230 + 90}$) = 1.25 R_{90°C}
25% increase.

11. VALUES OF K FOR CALCULATION OF THE EFFECTS OF FAULT CURRENT

Conductor	Insulation	Q ₁ °C	Q _F °C	k
Copper	PVC	70	160	115
	PVC*	70	140	103
	PVC	30	160	143
	PVC*	30	140	133
	Rubber	85	220	134
	XLPE	90	250	143
Aluminium	PVC	70	160	76
	PVC	30	160	95
Steel	PVC	30	160	52
Bare Copper	-	30	200	159
Bare Aluminium	-	30	200	105

*For conductors larger than 300mm²

12. (a)

Figure 3 Time current characteristic of the MCB

Figure 4 Time-current characteristic of a typical MCCB

12. (c)

13. EXAMPLE (I)

. <u>MSB</u>

3.(a) assuming fault level 1000MVA at 33kV

$$I_{SC} = \frac{1000 \times 10^{6} \text{VA}}{\sqrt{3} \times 400 \text{V}} = 1,443,418 \text{ A}$$
$$Z_{Source} = \frac{400 \text{V}}{\sqrt{3} \times I_{SC}} = \frac{400 \text{V}}{\sqrt{3} \times 1,443,418} = j \ 0.00016 \ \Omega \quad \#$$

3. (b) 2000KVA Transformer; 33/0.4KV; 50Hz DY_n11; Impedance 6% 3phase fault level at secondary terminal of 2000KVA transformer fault level T/F = $\frac{2000KVA}{0.06}$ = 33.33 MVA I_{SCTF} at T/F = $\frac{33.33MVA}{\sqrt{3} \times 0.4KV}$ = 48.11 KA Z_{TF} = $\frac{400V}{\sqrt{3} \times I_{SCTF}}$ = $\frac{400V}{\sqrt{3} \times 48.11KA}$ = 0.0048 Ω #

If
$$\frac{X}{R} = 5$$
, $X = 5R$
 $Z = \sqrt{R^2 + X^2} = \sqrt{R^2 + (5R)^2} = R\sqrt{26}$
 $R = \frac{Z}{\sqrt{26}} = \frac{0.0048}{\sqrt{26}} = 0.00094 \ \#$
 $X = 5R = i \ 0.0047 \ \#$

3.(c) 7 x 4 x 1C 300 300mm² XLPE/PVC (length 20m) From the voltage drop table (300mm² XLPE/PVC)

r = $\frac{0.14}{\sqrt{3}}$ mV/amp/meter, x = $\frac{0.14}{\sqrt{3}}$ mV/amp/meter at temperature 90°C. Resistance r to be adjusted to average temperature = $\frac{90+250}{2}$ = 170°C

: Effective r =
$$\frac{0.14}{\sqrt{3}} \times \frac{230+170}{230+90} = \frac{0.14}{\sqrt{3}} \times 1.25$$

$$Z_{300} = \frac{1}{7} \times \left[\left(\frac{0.14}{\sqrt{3}} \times 1.25 \right) + j \frac{0.14}{\sqrt{3}} \right] \times 10^{-3} \times 20m$$

= (0.014433 + j0.011547) × 10⁻³ × 20m

 $Z_{300} = 0.0002886 + j0.00023094 \#$

3.(d) $Z_{total} = Z_{SC} + Z_{TR} + Z_{300}$

= j0.00016+0.00094+j0.0047+0.0002886+j0.00023094

= 0.001286+j0.0050909

 $= \sqrt{0.000001509 + 0.00002591}$

 $=\sqrt{0.000027419}$

Z_{total} = 0.005236 #

3.(e) I_{SC} at MSB = $\frac{400}{\sqrt{3}Z_{total}} = \frac{400}{\sqrt{3} \times 0.005236} = 43,362 \#$ \therefore 3200A TPN ACB with 50kA breaking capacity is recommended at MSB. #

4.(a) <u>MSB</u> <u>Protection against short circuit current</u>

7 x 4 x 1C 300mm² XLPE/PVC cable connected to the 400V MSB is protected against I_{SC} = 43362 A short circuit current by the direct acting trip (magnetic trip) of ACB with operates within 0.04 sec.

Since critical time ,
$$t_c = \frac{k^2 S^2}{I_{SC}^2} = \frac{143^2 x (7 \times 300)^2}{43362^2}$$

For the cable (300mm²⁾= 48 sec

.: The cable is protected by 3200A TPN ACB because 48 > 0.04sec.

4.(b) To check whether 4 x 1C 240mm² XLPE/PVC sub main cable (60m) to SDB 1 is protected against short circuit current.

At the origin of 400A MCCB for 240mm² XLPE/PVC submain near MSB, I_{SCmax} = 43362 as calculated earlier.

4.(d) Check from MCCB characteristic for 400A MCCB, it should operate in 0.02 sec on magnetic trip.

Critical time for cable 240mm² XLPE/PVC, $t_c = \frac{k^2 S^2}{I_{SC}^2} = \frac{143^2 x \, 240^2}{43362^2}$ $t_c = 0.62 \text{ sec} > 0.02 \text{ sec}$ (OK)

The cable is protected against short circuit current (240mm²) by 400A TPN MCCB.

5.(a) <u>SDB</u>

At the remote end of 240mm² submain (60m) $I_{SC(max)} = 3$ phase short circuit current at the remote end. From the table voltage drop (240mm² XLPE/PVC) r = $\frac{0.17}{\sqrt{3}}$ mV/amp/meter, x = $\frac{0.14}{\sqrt{3}}$ mV/amp/meter at temperature 90°C.

r to be adjusted to average temperature = $\frac{90+250}{2}$ = 170°C

$$\therefore r = \frac{0.17}{\sqrt{3}} \times \frac{230 + 170}{230 + 90} = \frac{0.17}{\sqrt{3}} \times 1.25 = 0.122 \text{ m}\Omega/\text{meter }\#$$

 $Z_{240} = (0.122 + j0.08) \times 10^{-3} \times 60m = 0.00732 + j0.0048$

5.(b) <u>SDB</u> $Z_{total(1)} = Z_{S} + Z_{T} + Z_{300} + Z_{240}$ = 0.001286 + j0.00509 + 0.00732 + j0.0048= 0.0086 + j0.00989 $=\sqrt{0.0000739+0.0000978}$ $=\sqrt{0.0001717}$ = 0.0131 Ω $I_{SC(240)} = \frac{400}{\sqrt{3} \times 0.0131} = 17,629$ amp

 \therefore 400 amp TPN MCCB with 20kA breaking capacity is recommended at SDB. #

5.(c) Critical time for cable 240mm² XLPE/PVC, $t_c = \frac{k^2 S^2}{I_{SC}^2} = \frac{143^2 x \, 240^2}{17629^2}$ $t_c = 3.8 \text{ sec}$

The 240mm² XLPE/PVC Cable is protected because 3.8 sec > 0.02 sec (MCCB).

At the origin of 100A MCCB for $35 \text{mm}^2 \text{XLPE/PVC}$ submain near SDB, $I_{\text{SCmax}} = 17,629$ kA as calculated at SDB.

Critical time for cable 35mm² XLPE/PVC, $t_c = \frac{k^2 S^2}{I_{SC}^2} = \frac{143^2 x 35^2}{17,629^2}$ $t_c = 0.08 \text{ sec}$ $t_c = 0.08 \text{ sec} > 0.02 \text{ sec}$

... This cable is protected against short circuit current by 100A MCCB.

6. <u>SDB (1)</u>

6. (a) At the remote end of 35mm^2 submain (20m) $I_{SC(max)} = 3$ phase short circuit current at the remote end. From the table voltage drop ($35 \text{mm}^2 \text{ XLPE/PVC}$) r = $\frac{0.15}{\sqrt{3}}$ mV/amp/meter, x = $\frac{0.155}{\sqrt{3}}$ mV/amp/meter at temperature 90°C.

r to be adjusted to average temperature = $\frac{90+250}{2}$ = 170°C

$$\therefore r = \frac{0.15}{\sqrt{3}} \times \frac{230 + 170}{230 + 90} = \frac{0.15}{\sqrt{3}} \times 1.25 = 0.829 \text{ m}\Omega/\text{meter }\#$$

 $Z_{35} = (0.829 + j0.0894) \times 10^{-3} \times 20m = 0.01658 + j0.001788$

6. (b) <u>SDB (1)</u> $Z_{total(2)} = Z_{total(1)} + Z_{35}$ = 0.0086 + j0.00989 + 0.01658 + j0.001788 = 0.02518 + j0.011678 $= \sqrt{0.000634 + 0.0001363}$ $= \sqrt{0.0007703}$ $= 0.02775 \Omega$ $I_{SC(35)} = \frac{400}{\sqrt{3} \times \overline{Z}_{total(2)}} = \frac{400}{\sqrt{3} \times 0.02775} = 8,322 \text{ amp}$

 \therefore 100 amp TPN MCCB with 9kA breaking capacity is recommended at SDB 1.

6.(c) Critical time for cable $35 \text{mm}^2 \text{XLPE/PVC}$, $t_c = \frac{k^2 S^2}{I_{SC}^2} = \frac{143^2 x \, 35^2}{8322^2}$

 $t_{c} = 0.361 \text{ sec}$

The 35mm² XLPE/PVC cable is protected by 100A TPN MCCB because 0.361 sec > 0.02 sec (MCCB).

6.(d) At the origin of 32A DP MCB for $6mm^2 \times LPE/PVC$ submain near SDB 1, $I_{SCmax} = 9$ kA as calculated at SDB 1.

Critical time for cable 6mm² XLPE/PVC, $t_c = \frac{k^2S^2}{I_{SC}^2} = \frac{143^2x 6^2}{8322^2}$ $t_c = 0.0106 \text{ sec}$

The cable 2x 1C 6mm² XLPE/PVC is protected by 32A DP MCB because $t_c = 0.0106 \text{ sec} > 0.01 \text{ sec}$ (MCB) t_c

Thermal limit of cable > MCB tripping time

6. (e) if we choose $10 \text{mm}^2 \text{XLPE/PVC}$ for 32A DP MCB Critical time for cable $10 \text{mm}^2 \text{XLPE/PVC}$ $t_c = \frac{k^2 S^2}{I_{SC}^2} = \frac{143^2 \times 10^2}{8322^2}$ $t_c = 0.029 \text{ sec}$

 \therefore 10mm² XLPE/PVC is protected because 0.029 > 0.01 sec.

Cable thermal limit time > MCB tripping time

7. <u>DB</u>

7.(a) At the remote end of 2x1C 6mm² XLPE/PVC (10m), $I_{SC(max)}$ = Line to Neutral short circuit current at the remote end. From the table voltage drop (6mm² XLPE/PVC) r = 7.9 mV/amp/meter, x =0 mV/amp/meter at temperature 90°C.

r to be adjusted to average temperature = $\frac{90+250}{2}$ = 170°C

:. Effective r = $\frac{7.9}{2} \times \frac{230+170}{230+90}$ = 3.95 x 1.25 = 4.9375 m Ω /meter # = 4.9375x 10⁻³x 10m = 0.0493 Ω

$$Z_{total(3)} = Z_1 + Z_2 + Z_3$$

Line to Neutral

 $Z_{SC} = 0+j0.00016$ $Z_{TR} = 0.00094+j0.0047$ $2 \times Z_{300} = 2 \times [0.0002886+j0.00023094]$ $2 \times Z_{240} = 2 \times [0.00732+j0.0048]$ $2 \times Z_{35} = 2 \times [0.01658+j0.001788]$ $2 \times Z_{6} = 2 \times [0.0493+j0]$

 $Z_{total} = 0.148067 + j0.018497$

7.(b) $Z_{total(LN)} = 0.148067 + j0.018497$ = $\sqrt{0.021923 + 0.000342}$ = $\sqrt{0.022265}$ = 0.149214 Ω

 $I_{SC(LN)} = \frac{400}{\sqrt{3} \text{ xZ}_{total(LN)}} = \frac{400}{\sqrt{3} \text{ x } 0.149214} = 1,547 \text{ amp}$ 32A DP MCB with 6kA breaking capacity is recommended at DB. critical time for cable 6mm² XLPE/PVC $t_c = \frac{k^2 S^2}{I_{SCLN}^2} = \frac{143^2 \text{ x } 6^2}{1547^2}$ $t_c = 0.3 \text{ sec}$

MCB magnetic tripping time = 0.01 sec 6mm² XLPE/PVC is protected line to neutral short circuit current because 0.3 > 0.01 sec.

13. EXAMPLE (II)

<u>MSB</u>

2.(a) assuming fault level 1000MVA at 33kV

$$I_{SC} = \frac{1000 \times 10^{6} \text{VA}}{\sqrt{3} \times 400 \text{V}} = 1,443,418 \text{ A}$$
$$Z_{Source} = \frac{400 \text{V}}{\sqrt{3} \times I_{SC}} = \frac{400 \text{V}}{\sqrt{3} \times 1,443,418} = \text{j } 0.00016 \text{ } \Omega \quad \#$$

2. (b) 2000KVA Transformer; 33/0.4KV; 50Hz DY_n11; Impedance 6% 3phase fault level at secondary terminal of 2000KVA transformer fault level T/F = $\frac{2000KVA}{0.06}$ = 33.33 MVA I_{SCTF} at T/F = $\frac{33.33MVA}{\sqrt{3} \times 0.4KV}$ = 48.11 KA $Z_{TF} = \frac{400V}{\sqrt{3} \times I_{SCTF}} = \frac{400V}{\sqrt{3} \times 48.11KA} = 0.0048 \Omega \#$ 2.(c) 7 x 4 x 1C 300mm² XLPE/PVC (length 20m) from the voltage drop table 300mm² XLPE/PVC

$$Z_{C} = \frac{1}{7} \times \frac{0.195}{\sqrt{3}} \text{ mV/amp/meter x 20m}$$

= 0.000321 \Omega #

2.(d)
$$Z_{total} = Z_{SC} + Z_{TR} + Z_C$$

= 0.00016+0.0048+0.000321 = 0.005281 Ω

2.(e)
$$I_{SC}$$
 at MSB = $\frac{400V}{\sqrt{3} \times Z_{total}} = \frac{400V}{\sqrt{3} \times 0.005281}$
= 43,731 amp

3200A TPN ACB with 50kA breaking capacity is recommended at MSB.

3.(a) Protection against short circuit current

7 x 4 x 1C 300mm² XLPE/PVC cable connected to the 400V MSB is protected against I_{SC} = 50 kA short circuit current by the direct acting trip (magnetic trip) of ACB with operates within 0.04 sec.

Since critical time , $t_c = \frac{k^2 S^2}{I_{SC}^2} = \frac{143^2 x (7 \times 300)^2}{43731^2}$ For the cable (300mm²⁾= 47.155 sec > 0.04 sec 3.(b) To check whether 4 x 1C 240mm² XLPE/PVC sub main cable (60m) to SDB 1 is protected against short circuit current.

At the origin of 400A MCCB for 240mm² XLPE/PVC submain near MSB, $I_{SCmax} = 43731$ as calculated earlier.

Check from MCCB characteristic for 400A MCCB, it should operate in 0.02 sec on magnetic trip.

Critical time for cable 240mm² XLPE/PVC, $t_c = \frac{k^2 S^2}{I_{SC}^2} = \frac{143^2 x \, 240^2}{43,731^2}$ $t_c = 0.61 \text{ sec} > 0.02 \text{ sec}$ (OK)

: The cable 240mm² XLPE/PVC is protected against short circuit current by 400A TPN MCCB.

4.(a) <u>SDB</u>

At the remote end of 240mm² submain (60m).

From the table voltage drop (240mm² XLPE/PVC)

$$Z_{240} = \frac{0.22}{\sqrt{3}}$$
 mV/amp/meter x 60m
= 0.007621 Ω

4.(b)
$$Z_{total} = Z_{SC} + Z_{TR} + Z_{300} + Z_{240}$$

= 0.00016+0.0048+0.000321+0.007621
= 0.012902 Ω

4.(c) I_{SC} at SDB = $\frac{400}{\sqrt{3} \times Z_{total}} = \frac{400}{\sqrt{3} \times 0.012902} = 17,900$ amp

400A TPN MCCB with 20kA breaking capacity is recommended at SDB.

5.(a) Critical time for cable 240mm² XLPE/PVC, $t_c = \frac{k^2 S^2}{I_{SC}^2} = \frac{143^2 x 240^2}{17,900^2}$ $t_c = 3.67 \text{ sec}$ \therefore The 240mm² XLPE/PVC is protected by 400A TPN MCCB. 3.67 sec > 0.02 sec.

5.(b) At the origin of 100A MCCB for $35 \text{mm}^2 \text{XLPE/PVC}$ submain near SDB, $I_{\text{SCmax}} = 17,900$ amp.

Critical time for cable 35mm² XLPE/PVC, $t_c = \frac{k^2 S^2}{I_{SC}^2} = \frac{143^2 x 35^2}{17,900^2}$ $t_c = 0.078 \text{ sec}$

t_{c(cable)} > MCCB tripping time 0.078 sec > 0.02 sec.

∴ This 35mm² XLPE/PVC is protected against short circuit current by 100A TPN MCCB.

<u>SDB 1</u>

6.(a) At the remote end of 35mm² (20m).

From the table voltage drop (35mm² XLPE/PVC)

$$Z_{35} = \frac{1.15}{\sqrt{3}} \text{ mV/amp/meter x 20m} = 0.013279 \Omega$$

$$Z_{total} = Z_{SC} + Z_{TR} + Z_{300} + Z_{240} + Z_{35}$$

= 0.00016+0.0048+0.000321+0.007621+0.013279
=0.026181 \Omega

6.(b)
$$I_{SC}$$
 at SDB 1 = $\frac{400}{\sqrt{3} \times Z_{total}} = \frac{400}{\sqrt{3} \times 0.026181} = 8,821$ amp

 100amp TPN MCCB with 9kA breaking capacity is recommended at SDB 1. 6.(c) Critical time for cable $35 \text{mm}^2 \text{XLPE/PVC}$, $t_c = \frac{k^2 S^2}{I_{SC}^2} = \frac{143^2 x 35^2}{8821^2}$ $t_c = 0.322 \text{ sec}$ \therefore The $35 \text{mm}^2 \text{XLPE/PVC}$ is protected by 100A TPN MCCB. Cable $t_c 0.322$ sec > 0.02 sec tripping time of MCCB.

6.(d) At the origin of 32A DP MCB for $6mm^2 XLPE/PVC$ submain near SDB 1, $I_{SCmax} = 8821$ amp.

Critical time for cable 6mm² XLPE/PVC, $t_c = \frac{k^2 S^2}{I_{SC}^2} = \frac{143^2 x 6^2}{8821^2}$ $t_c = 0.0094$ sec

The cable 2x1C 6mm² XLPE/PVC is not protected against short circuit current by 32A DP MCB because 0.0094 sec < 0.01 sec. Thermal limit of cable < MCB tripping time. 6.(e) if we choose $10 \text{mm}^2 \text{XLPE/PVC}$ for 32A DP MCB Critical time for cable $10 \text{mm}^2 \text{XLPE/PVC}$ $t_c = \frac{k^2 S^2}{I_{SC}^2} = \frac{143^2 \times 10^2}{8821^2}$ $t_c = 0.026 \text{ sec}$

 \therefore 2 x 1C 10mm² XLPE/PVC is protected by 32A DP

Cable thermal limit time 0.026 > 0.01 MCB tripping time #

7.(a) At the remote end of $10 \text{mm}^2 \text{ XLPE/PVC}$ (10m), $I_{SC(max)}$ = Line to Neutral short circuit current.

From the table voltage drop (10mm² XLPE/PVC),

$$r = \frac{4.7}{2} \times 10^{-3} \times 10m = 0.0235 \Omega \#$$

7.(b)
$$Z_{total} = Z_{SC} + Z_{TR} + (2 \times Z_{300}) + (2 \times Z_{240}) + (2 \times Z_{35}) + (2 \times Z_{10})$$

 $Z_{SC} = 0.00016$
 $Z_{TR} = 0.0048$
 $2 \times Z_{300} = 2 \times 0.000321 = 0.000642$
 $2 \times Z_{240} = 2 \times 0.007621 = 0.015242$
 $2 \times Z_{35} = 2 \times 0.013279 = 0.026558$
 $2 \times Z_{10} = 2 \times 0.023500 = 0.047$
 $Z_{total} = 0.094402$

 $I_{SC(LN)} = \frac{400}{\sqrt{3} \text{ x} \overline{Z}_{total(LN)}} = \frac{400}{\sqrt{3} \text{ x} 0.094402} = 2,446 \text{ amp}$ 32A DP MCB with 6kA breaking capacity is recommended at DB. critical time for cable 10mm² XLPE/PVC $t_c = \frac{k^2 S^2}{I_{SCLN}^2} = \frac{143^2 \text{ x} 10^2}{2446^2}$ $t_c = 0.34 \text{ sec}$ MCB magnetic tripping time = 0.01 sec

10mm² XLPE/PVC is protected line to neutral short circuit current because 0.34 > 0.01 sec.(OK)

S/N	Type of Fault	Location	Example (I) Amp	Example (II) Amp	Cable
1	3 phase	MSB	43362	43731	7x4x1C 300mm ² XLPE/PVC
2	3 phase	SDB	17629	17900	4x1C 240mm ² XLPE/PVC
3	3 phase	SDB1	8322	8821	4x1C 35mm ² XLPE/PVC
4	L-N	DB	1547	2446	2x1C 10mm ² XLPE/PVC

Fault Current Calculated by two methods

151										
2	-	151		1	17	12	-	-	1	72
		ļ	ليسط	= 				Ŧ	I	
3 Phase+50% Internal Earth	3 Phase+ +50% Int	100% Neu emai Earth	trat	3	Phase+2i +50% Inter	00% Neutra mel Earth	si .	3 P Isola	hase+100 ted Earth+	% N
Rated Current (In)	Amps	600	800	900	1000	1200	1350	1600	1800	2
Product Code		SBC 40N1	SBC 50N1	SBC 60N1	SBC 70N1	SBC 80N1	SBC 100N1	SBC 125N1	SBC 150N1	S 17
Busbar size per phase (No. of busbars)	mm	6x40(1)	6x50(1)	6x60(1)	6x70(1)	6x80(1)	6x100(1)	6x125(1)	6x150(1)	6x1
Overall Height (H)	mm	85	95	105	115	125	145	170	195	2
Rated Three Phase RMS Short Time Current for 1 Second (Icw)	k,A	40	50	50	65	65	85	100	100	1
Rated Three phase Peak short time current (lpk)	kА	84	105	105	143	143	187	220	220	2
Rated Single Phase RMS Short Time Current for 1 Second (lcw)	kA.	24	30	30	39	39	51	60	60	1
Rated Single phase Peak short time current (Ipk)	kA	50.4	63	63	81,9	81.9	112.2	132	132	1
Approximate Weight of Bu	strunkin	g							_	_
3 Phase + 50% Internal Earth	kg/mtr.	20	22	24	27	29	34	40	46	
3 Phase + 100% Neutral + 50% Internal Earth	kg/mtr.	22	25	28	31	34	40	47	55	
3 Phase + 200% Neutral + 50% Internal Earth	kg/mtr.	25	29	32	36	40	47	56	65	
3 Phase + 100% Neutral + 100% Isolated Earth + 50% Internal Earth	kg/mtr.	25	29	32	36	40	47	58	65	
Electrical Characteristics	for 50 Hz	: 								_
AC Resistance at 20°C (R20)	/milohms /mtr.	0.0740	0.0592	0.0499	0.0427	0.0378	0.0311	0.0249	0.0207	0.0
A.C. Resistance at thermal conditions (R)	miliohms /mtr.	0.0959	0.0767	0.0645	0.0553	0.0489	0.0403	0.0322	0.0268	0.0
Reactance (X)	intr.	0.0417	0.0333	0.0278	0.0238	0.0208	0.0170	0.0136	0.0127	0.1
Impedance at thermal conditions (Z)	miliohms /mtr.	0.1045	0.0836	0.0703	0.0602	0.0631	0.0437	0.0350	0.0297	0.0
	at 0.7 P.F.	0.1678	0.1342	0,1126	0.0965	0.0850	0.0698	0.0559	0.0482	0,1
Composite Voltage drop at full Load concentrated at the end of	at 0.8 P.F.	0.1781	0.1409	0.1183	0.1014	0.0894	0.0735	0.0588	0.0504	0.1
bustrunking run (ΔV)	at 0.9 P.F.	0.1809	0.1447	0.1216	0.1042	0.0920	0.0756	0.0605	0.0514	0.0
	at 1.0 P.F.	0.1660	0.1328	0.1118	0.0958	0.0847	0.0697	0.0558	0.0465	0,
Electrical Characteristics	for 60 Hz	2	-			1 2 44.00	1	1		
AC Resistance at 20°C (R20)	/maonins	0.0742	0.0594	0.0500	0.0429	0.0379	0.0313	0.0251	0.0209	0.
A.C. Resistance at thermal conditions (Rt)	miliohms /mtr.	0.0961	0.0769	0.0648	0.0556	0.0491	0.0405	0.0325	0.0271	0.
Reactance (X)	/min	0.0500	0.0400	0.0333	0.0286	0.0250	0.0204	0.0163	0.0152	0.
Impedance at thermal conditions (Z)	milohms /mtr.	0.1083	0.0867	0.0729	0.0625	0.0551	0.0454	0.0363	0.0311	0.
	mV/mtr./A at 0.7 P.F.	0.1784	0,1427	0,1198	0.1027	0.0905	0.0743	0.0595	0.0516	0.
Composite Voltage drop at full	at 0.8 P.F.	0.1851	0.1482	0.1244	0.1067	0.0941	0.0773	0.0619	0.0533	0.
Load concentrated at the end of	mv/mir./A	0 1876	0.1501	0.1262	0.1082	0.0955	0.0785	0.0629	0.0537	0
bustrunking run (ΔV)	at 0.9 P.F.	4.1010	0.1001	0.000			-		-	-

Technical Parameters

Voltage Drop Calculation Formulae

∆V = k x √3 x (Rt cos Ø + X sin Ø) x le x L

Where

- ΔV is the composite voltage drop of the system (V); Rt & X are the mean resistance and reactance values of
- $\begin{array}{ll} \mbox{the system }(\Omega/m);\\ \mbox{is the actual load current of the circuit being} \end{array}$

considered (A);

is the	length	of the	system	being
consi	tered (M):		

Cos Ø is the load power factor being considered;

k

is the load distribution factor. k=1, if full load is concentred at the end of the busbar trunking run; k=(n+1)/2n, if the load is uniformly spread between n branches.

Rated Current (in)	Amps	2500	2500	3200	3600 SBC	4000 SBC	4500 SBC	5000 SBC	6000 SBC	6600 SBC
Product Code	-	200N1	100 N2	125N2	150N2	175N2	200 N2	230N2	175N3	200N3
Busbarsize per phase (No. of	mm	6x200(1)	6x100(2)	6x125(2)	6x150(2)	6x175(2)	6x200(2)	6x230(2)	6x175(3)	6x200(3)
busbars)	mm	245	290	340	390	440	490	550	660	735
Rated Three Phase RMS Short	kA	100	120	150	150	150	150	150	175	175
Time Current for 1 Second (Icw)		220	06.4	330	330	330	330	330	385	385
time current (lpk) Rated Single Phase RMS Short	KA KA	60	72	90	90	90	90	90	105	105
Time Current for 1 Second (Icw) Rated Single phase Peak short	kĀ	132	158.4	198	198	198	198	198	231	231
time current (lpk)	t in the later	-		-	-					A 1
Approximate Weight of Bus	atrunkin	9	-	1	1	Tim	1 440	107	145	164
3 Phase + 50% Internal Earth	kg/mtr.	58	65	75	87	100	114	121	145	
3 Phase + 100% Neutral + 50%	kg/mtr.	70	79	90	105	121	138	155	177	200
3 Phase + 200% Neutral + 50%	kg/mbr.	83	94	106	124	142	161	183	209	236
3 Phase + 100% Neutral + 100%	igimir.	83	94	106	124	142	161	183	209	236
Electrical Characteristics	for 50 H	Z					-		-	-
AC Resistance at 20°C (R20)	miliohme	0.0157	0.0131	0.0124	0.0104	0.0090	0.0078	0.0068	0.0060	0.0052
A.C. Resistance at thermal	milohme	0.0203	0.019	0.0161	0.0134	0.0116	0,0102	0.0088	0.0077	0.0068
conditions (Rt)	milohms	0.0005	0.000	0.0070	0.0064	0.0055	0.0049	0.0042	0.0038	0.0033
Reactance (X)	/mtr.	0.0095	0.0000	0.007	0.000	0.0128	0.0112	0.0008	0.0086	0.0076
Impedance at thermai	/mtr.	0.0224	0.0198	0.0176	0.0140	0.0120		-	-	
conditions (4)	mV/mtr.//	A 0.0364	0.031	8 0.028	2 0.0242	0.0209	0.0183	B 0.0160	0.014	0.0123
Composite Voltage drop at full	at 0.8 PJ	A 0.0380	0.036	7 0.029	6 0.025	0.021	8 0.019	0.0168	0.014	7 0.0129
Load concentrated at the and of bustrunking run (AV)	mV/mtr./	A 0.0384	0.033	8 0.030	4 0.025	0.022	2 0.019	5 0.0170	0.014	9 0.0131
near mining (an (ar)	mV/mtr.	A 0.035	0.030	6 0.027	9 0.023	2 0.020	1 0.017	6 0.015	3 0.013	4 0.0117
Flastelaal Characteristics	for 60 h	z				Service .				_
AC Presistance at 20°C (R20)	miahm	8 0.015	0.013	8 0.012	6 0.010	6 0.009	2 0.008	0 0.007	0.006	2 0.0054
A.C. Resistance at thermal	milphm	s 0.020	5 0.017	9 0.016	3 0.013	7 0.011	9 0.010	4 0.009	1 0.008	0 0.0070
conditions (Rt)	ntiohm	8 0.011	4 0.009	300.0 0	34 0.007	7 0.006	6 0.005	0.005	1 0.004	6 0.0040
Meactance (A)	/mtr.	-	-			7 0.013	a 0.011	9 0.010	4 0.009	2 0.008
impedance at thermal conditions (Z)	/mtr.	0.023	5 0.020	0.018	14 0.015	0,013	0 0.011	0.010	0.044	3 0.013
	at 0.7 P	0.039	0 0.034	40 10.030	02 0.026	0 0.022	25 0.019	18 0.017	3 0.01	0.010
Composite Voltage drop at full	mV/mtr. at 0,8 P	./A 0.040	3 0.03	51 0.03	14 0.020	0.023	33 0.020	0.017	8 0.015	0.013
Load concentrated at the end of bustrunking run (AV)	mV/mtr	./A 0.040	7 0.03	54 0.03	18 0.02	71 0.023	34 0.020	0.018	0 0.01	59 0.014
	mW/mtr	JA 0.035	6 0.03	10 0.02	83 0.02	37 0.02	0.01	80 0.013	0.01	38 0.012

BA (Aluminum Sondwich	Insulate	d Bus	Trunki	ng)	17;	2	+1) 	17	2
	ĺ			±	ģ		-	=	ĺ	
3 Phase+50% Internal Earth	3 Phase+1 +50% Inte	00% Neuti mal Earth	न्त्र।	3	Phase+20 50% Inten	0% Neutral val Earth		3 Ph Isolati	ase+100% ed Earth+5	Neutral+10 0% Interna
Rated Current (In)	Amps	400	500	630	700	800	1000	1250	1350	1600
Product Code		SBA 40N1	SBA 50N1	SBA 60N1	SBA 70N1	SBA 80N1	SBA 100N1	125N1	58A 150N1	56A 175N1
Busbarsize per phase (No. of	mm	6x40(1)	6x50(1)	6x60(1)	8x7D(1)	6x80(1)	6x100(1)	6x125(1)	6x150(1)	8x175(1)
Overall Height (H)	mm	85	95	105	115	125	145	170	195	220
ated Three Phase RMS Short	kA	25	30	40	40	50	65	80	85	100
Rated Three phase Peak short	kA	52.5	63	84	84	105	143	168	187	220
Rated Single Phase RMS Short	kA.	15	18	24	24	30	39	48	51	60
Rated Single phase Peak short ime current (lpk)	kA	30	38	50.4	50.4	63	81.9	100.8	112.2	132
Approximate Weight of Bus	strunking	1								
Phase + 50% Internal Earth	kg/mtr,	15	16	17	18	19	22	25	28	30
3 Phase + 100% Neutral + 50% Internal Earth	kg/mtr.	16	17	18	19	21	24	27	30	, 34
3 Phase + 200% Neutral + 50% Internal Earth	kg/mtr.	17	18	20	22	23	26	30	34	38
3 Phase + 100% Neutral + 100% isolated Earth + 50% Internal Earth	kg/mtr.	17	18	20	22	23	26	30	34	38
Electrical Characteristics f	or 50 Hz		-		1	1	1	1	T	
AC Resistance at 20°C (R20)	Intr.	0.1198	0.0958	0.0806	0.0691	0.0611	0.0503	0.0402	0.0335	0.0290
A.C. Resistance at thermal	millohms /mtr	0.1553	0.1243	0.1046	0.0896	0.0792	0.0652	0.0522	0.0435	0.0376
Reactance (X)	millohms	0.0417	0.0333	0.0278	0.0238	0.0208	0.0170	0.0136	0.0127	0.0109
Impedance at thermal	milliohms	0.1608	0.1286	0.1082	0.0927	0.0819	0.0674	0.0539	0.0453	0.0392
conditions (Z)	/mtr. mV/mtr./A	0.2398	0.1919	0.1612	0.1381	0.1218	0.1001	0.0801	0.0684	0.0691
Composite Voltage drop at full	at 0.7 P.F. mV/mtr./A	0.2585	0.2068	0.1738	0.1490	0.1314	0.1081	0.0864	0.0734	0.0634
Load concentrated at the end of bustrunking run (AV)	at 0.8 P.F.	0.2736	0.2189	0,1840	0.1577	0.1392	0.1145	0.0916	0.0774	0.0669
a	mV/mtr./A at 1.0 P.F.	0.2690	0.21 52	0.1B11	0.1553	0.1372	0.1130	0.0904	0.0753	0.0652
Electrical Characteristics f	for 60 Hz								-	-
AC Resistance at 20°C (R20)	miliohms /mir	0.1200	0.09/61	0.0809	0.0694	0.0614	0.0506	0.0405	0.0338	0.0293
A.C. Resistance at thermal	milohms /mtr.	0,1657	0.1246	0.1050	0.0900	0.0796	0.0858	0.0526	0.0439	0.0380
Reactance (X)	milohms	0.0500	0.04/00	0.0333	0.0286	0.0250	0.0204	0.0163	0.0152	0.0130
Impedance at thermal	milohms	0,1635	0.1309	0.1101	0.0944	0.0834	0.0687	0.0551	0.0464	0.0402
conditions (Z)	/mtr. mV/mtr./A	0.2508	0.2006	0.1685	0.1445	0.1274	0.1048	0.0839	0.0720	0.0622
Composite Voltage drop at full	at 0.7 P.F. mV/mtr.JA	0.2677	0.2163	0.1801	0.1544	0,1383	0.1121	0.0898	0.0766	0.0662
Load concentrated at the end of	at 0.8 P.F.	0.20(1	0.0.140		0.1010	0.4450	0.000	0.0040	0.0700	0.0604
bustrunking run (ΔV)	at 0.9 P.F.	0.2805	0.2248	0.1888	0.1619	0.1430	0.11//	0.0943	0.0188	0.0001
	ALL OFF	0.2697	0.2159	0.1818	0.1559	0.1379	0,1137	0.0911	0.0700	0.0008

-

L

k

is the length of the system being

is the load distribution factor.

k=1, if full load is concentred at the

considered (M);

considered;

Cos Ø is the load power factor being

Voltage Drop Calculation Formulae

∆V = k x √3 x (Rt cos Ø + X sin Ø) x la x L

Where

- ΔV is the composite voltage drop of the system (V); Rt & X are the mean resistance and reactance values of
- the system (Ω/m);

considered (A);	cument of	me circu	in being			k=	(n+1)/2r spre	h, if the l ad betw	oad is ur een n bra	niformly anches.
Rated Current (In)	Amps	1800	2000	2250	2500	3200	3600	4000	4500	5000
Product Code		SBA 200N1	SBA 100N2	SBA 125N2	SBA 150N2	SBA 175N2	SBA 200N2	SBA 150N3	SBA 175N3	SBA 200N3
Busbar size per phase (No. of busbars)	mm	6x200(1)	6x100(2)	6x125(2)	6x150(2)	6x175(2)	6x200(2)	6x150(3)	6x175(3)	6x200(3)
Overall Height (H)	mm	245	290	340	390	440	490	585	660	735
Rated Three Phase RMS Short	iκ A	100	100	120	120	120	120	175	175	175
Time Current for 1 Second (low) Rated Three phase Peak short	IKA.	220	220	264	264	264	264	385	385	385
time current (Ipk) Rated Single Phase RMS Short Time Current for 1 Second (Icw)	kA	60	60	72	72	72	72	105	105	105
Rated Single phase Peak short	50	+99	492	259 A	158.4	158.4	158.4	231	231	231
time current (lpk)	XA.	132	132	130.4	130.4	1.00.00	1.00.4	-		
Approximate Weight of Bu	strunkin	g							_	
3 Phase + 50% Internal Earth	kg/mtr.	33	38	44	50	57	63	, 71	81	90
3 Phase + 100% Neutral + 50%	kg/mtr.	37	42	49	56	63	71	80	91	101
3 Phase + 200% Neutral + 50%	kg/mtr.	42	46	55	63	71	79	89	101	114
3 Phase + 100% Neutral + 100% isolated Earth + 50% Internal Earth	kg/mtr.	42	46	55	63	71	79	89	101	114
Electrical Characteristics	for 50 Hz	z	-							
AC Resistance at 20°C (R20)	miliohms /mtr.	0.0254	0.0251	0.0201	0.0168	0.0145	0.0127	0.0112	0.0097	0.0085
A.C. Resistance at thermal conditions (Rt)	miliohms /mtr.	0.0329	0.0326	0.0261	0.0217	0.0188	0:0165	0.0145	0.0125	0.0110
Reactance (X)	milohms	0.0095	0.0088	0.0070	0.0064	0.0055	0.0049	0.0044	0.0038	0.0033
Impedance at thermal conditions (Z)	miliohms /mtr.	0.0343	0.0338	0.0270	0.0227	0.0196	0.0172	0.0152	0,0131	0.0115
	mV/mtrJA at 0.7 P.F.	0.0517	0.0504	0.0403	0.0343	0.0296	0.0260	0.0231	0.0199	0.0174
Composite Voltage drop at full	mV/mtr./A at 0.8 P.F.	0.0555	0.0543	0.0434	0.0368	0.0318	0.0279	0.0247	0.0213	0.0187
bustrunking run (ΔV)	mV/mtr /A at 0.9 P.F.	0.0585	0.0575	0.0460	0,0387	0.0335	0.0293	0.0260	0.0224	0.0196
	et 1.0 P.F.	0.0570	0.0565	0.0452	0.0377	0.0326	0.0285	0.0251	0.0217	0,0190
Electrical Characteristics	for 60 Ha	z		S						
AC Resistance at 20°C (R20)	milohms	0.0257	0.0254	0.0204	0.0171	0.0148	0.0130	0.0115	0.0100	0.0068
A.C. Resistance at thermal	miliohms /mtr	0.0333	0.0330	0.0265	0.0221	0.0192	0.0189	0.0149	0.0129	0.0114
Reactance (X)	miliohms	0.0114	0.0105	0.0084	0.0077	0.0086	0.0059	0.0053	0.0046	0.0040
Impedance at thermal	/mtr. miliohms	0.0350	0.0240	0.0278	0.0224	0.0202	0.0178	0.0158	0.0137	0.0121
conditions (Z)	/mir.	0.0352	0.0346	0.0278	0.0239	0.0203	0,0178	0.0100	1.0137	0.0121
	at 0.7 P.F.	0.0545	0.0530	0.0425	0.0383	0.0314	0.0277	0.0248	0.0213	0.0187
Composite Voltage drop at full Load concentrated at the end of	at 0.8 P.F.	0.0580	0.0568	0.0454	0.0386	0.0334	0.0294	0.0262	0.0227	0.0199
bustrunking run (ΔV)	at 0.9 P.F.	0.0606	0.0594	0.0476	0.0403	0.0349	0.0307	0.0272	0.0236	0.0207
	at 10 PE	0.0577	0.0572	0.0459	0.0383	0.0333	0.0292	0.0258	0.0224	0.0197

13. EXAMPLE (III)

2.(a) fault level 1000MVA at 33kV

$$I_{SC} = \frac{1000 \times 10^{6} \text{VA}}{\sqrt{3} \times 400 \text{V}} = 1,443,418 \text{ A}$$
$$Z_{Source} = \frac{400 \text{V}}{\sqrt{3} \times I_{SC}} = \frac{400 \text{V}}{\sqrt{3} \times 1,443,418} = \text{j } 0.00016 \text{ } \Omega \quad \#$$

2.(b) 1600KVA Transformer; 33/0.4KV; 50Hz

DY_n11; Impedance 6% 3phase fault level at secondary terminal of 2000KVA transformer fault level T/F = $\frac{1600 \text{KVA}}{0.06}$ = 26.666 MVA I_{SCTF} at T/F = $\frac{26.666 \text{MVA}}{\sqrt{3} \times 0.4 \text{KV}}$ = 38,491 A impedance at $Z_{\text{TF}} = \frac{400 \text{V}}{\sqrt{3} \times 1_{\text{SCTF}}} = \frac{400 \text{V}}{\sqrt{3} \times 38,491 \text{A}}$ Z_{TF} = j0.006 Ω # 2.(c) 2500A TPN (Cu) BUS-BAR TKG (L=15m) $Z_{2500} = 0.0367$ mV/amp/meter x 15m = 0.00055 Ω

2.(d)
$$Z_{total} = Z_{Source} + Z_{TF} + Z_{cu}$$

= 0.00016+0.006+0.00055
 $Z_{total(1)} = 0.00671 \Omega \#$

2.(e) Short circuit current at MSB

$$I_{SC1} = \frac{400}{\sqrt{3} \text{ x} Z_{total}} = \frac{400}{\sqrt{3} \text{ x} 0.00671} = 34,418 \text{ amp}\#$$

2.(f) 2500A TPN ACB with 36kA breaking capacity is recommended at MSB. #

3.(a) 1350A TPN (Cu) BUS-BAR Trunking (L=20m) $Z_{1350} = 0.0735 \text{ mV/amp/meter x } 20m = 0.00147 \Omega$

3.(b)
$$Z_{total(2)} = Z_{total(1)} + Z_{1350}$$

= 0.00671+0.00147
= 0.00818 Ω #

3.(c) Short circuit current at Tap off unit

$$I_{SC2} = \frac{400}{\sqrt{3} \times Z_{total(2)}} = \frac{400}{\sqrt{3} \times 0.00818} = 28,233 \text{ amp}\#$$

3.(d) 1250A TPN MCCB with 36kA breaking capacity is recommended at Tap off unit (1). #

4. (a) From the table voltage drop 4 x 1C 50mm² XLPE/PVC (25m), $Z_{50} = \frac{0.87}{\sqrt{3}} \text{ mV/amp/meter x 25m}$ $Z_{50} = 0.012557 \Omega$

4.(b)
$$Z_{total(3)} = Z_{total(2)} + Z_{50}$$

 $Z_{total(3)} = 0.00818 + 0.012557 = 0.020737 \Omega$

4.(c)
$$I_{SC} = \frac{400}{\sqrt{3} \times Z_{total(3)}} = \frac{400}{\sqrt{3} \times 0.020737} = 11,136 \text{ amp } \#$$

4.(d) 125A TPN MCCB with 24kA breaking capacity is recommended at FDB.

5. (a) From the table voltage drop 4 x 1C 25mm² XLPE/PVC (20m), $Z_{25} = \frac{1.6}{\sqrt{3}} \text{ mV/amp/meter x 20m x 10^{-3}}$ $Z_{25} = 0.018497 \Omega$

5.(b)
$$Z_{total(4)} = Z_{total(3)} + Z_{25}$$

 $Z_{total(4)} = 0.020737 + 0.018497 = 0.039234 \Omega$

5.(c)
$$I_{SC} = \frac{400}{\sqrt{3} \times Z_{total(4)}} = \frac{400}{\sqrt{3} \times 0.039234} = 5,886 \text{ amp } \#$$

 \therefore 63A TPN MCCB with 6kA breaking capacity is recommended at DB.

6.(a) check thermal limit of cable 50mm² XLPE/PVC at tap off unit origin.

$$t_{c} = \frac{k^{2}S^{2}}{I_{SC}^{2}} = \frac{143^{2}x\,50^{2}}{28233^{2}} = 0.064 \text{ sec}$$

125A MCCB magnetic tripping time = 0.02 sec

: 0.064 sec > 0.02 sec

The cable 50mm² XLPE/PVC is protected against short circuit current 28233 amp by 125A TPN MCCB.

7.(a) check thermal limit of cable 25mm² XLPE/PVC at FDBorigin.

$$t_c = \frac{k^2 S^2}{I_{SC}^2} = \frac{143^2 x \, 25^2}{11136^2} = 0.103 \text{ sec}$$

125A MCCB magnetic tripping time = 0.02 sec ∴ 0.103 sec > 0.02 sec

The cable 25mm² XLPE/PVC is protected against short circuit current 11136 amp by 125A TPN MCCB.

13. EXAMPLE (IV)

Transformer 33kV, 400/230V, 50 Hz

					$\frac{MVA}{\sqrt{3x0.4}}$	$\frac{400}{\sqrt{3 x I s c}}$
S/N	Capacity (kVA)	Full Load Current <u>kVA</u> √3x0.4	Impendanc e at 75° C Iz %	Fault Level MVA	Short Circuit Current kA	Transformer Impedence ohm
1	160	230	4	4	5.77	0.04
2	200	288	4	5	7.21	0.032
3	250	360	4	6.25	9.02	0.025
4	315	454	4	7.875	11.36	0.02
5	400	577	4	10.0	14.43	0.016
6	500	721	4	12.5	18.04	0.0128
7	630	909	4	15.75	22.73	0.0101
8	750	1082	5	15.0	21.65	0.0106
9	800	1154	5	16.0	23.09	0.01
10	1000	1443	6	16.66	24.04	0.009
11	1250	1804	6	20.833	30.07	0.0076
12	1500	2165	6	25.0	36.085	0.0064
13	2000	2886	6	33.33	48.1	0.0048
14	2500	3608	7	35.714	51.55	0.00448
15	3000	4330	7	42.857	61.86	0.00373

